
Classifying CIFAR-10 Images Using Unsupervised Feature
& Ensemble Learning

Truc Viet “Joe” Le
Heinz College

Carnegie Mellon University
tjle@andrew.cmu.edu

Naassih Gopee
School of Computer Science
Carnegie Mellon University

ngopee@andrew.cmu.edu

ABSTRACT
We perform the image classification task on the CIFAR-10
dataset, where each image belongs to one of the ten distinct
classes. The classes are mutually exclusive and are mostly
objects and animals. The images are small (32⇥ 32 pixels),
of uniform size and shape, and RGB coloured. We imple-
ment an proposed image preprocessing framework to learn
and extract the salient features of the images. The method
was demonstrated to increase the classification performance
significantly. We testify such claim and see a considerable
improvement of more than 15% from the baseline (i.e., with-
out preprocessing). We further experiment with various pa-
rameters and settings of the proposed method to tune the
preprocessing frameworks. We also experiment with a vari-
ety of linear classifiers on the preprocessed images. We find
out that a simple SVM classifier with linear kernel performs
the best. We finally experiment with ensemble learning by
combining a linear SVM with a multinomial logistic regres-
sion. The ensemble learning marginally improves on the
simple linear SVM at a high computational cost.

1. INTRODUCTION
In this project, our task is to classify the 15,000 colour

images randomly extracted from the CIFAR-10 dataset [3].
The CIFAR-10 dataset consists of 60,000“tiny”colour (RGB)
images, where each is of dimension 32⇥32 pixels. These im-
ages can be classified into 10 classes of equal size, where each
contains 6,000 images and the classes correspond to mostly
objects (such as ships, cars, airplanes, etc.) and animals
(cats, dogs, frogs, etc.). A hundred random sample images
from the dataset are shown in Fig. 1 together with their cor-
rect classifications. These 10 classes are completely mutually
exclusive, e.g., there is no overlapping between automobiles
and trucks. Hence, the goal of the project is to label the
15,000 test images with their correct classes.

To this end, we are provided with a training set of 4,000
random images from the same CIFAR-10 dataset (that are
non-overlapping with those in the test set) to develop a pre-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Sample images from the CIFAR-10 dataset

and their correct classifications [3].

dictive model for the classification. We reimplement the
image preprocessing method proposed by Coates et al. [1]
with some minor modifications to improve the classification.
The preprocessing relies two separate sequential phases: fea-
ture learning and feature extraction. Feature learning ex-
tracts random patches from the training images, where each
patch is a smaller sub-image of a predefined dimension, and
learns the features from the extracted patches using an un-
supervised clustering algorithm such as K-means or GMM.
Thus, each feature corresponds to the centroid of each clus-
ter. Feature extraction then systematically extracts over-
lapping patches (convolutional extraction) from each image
in the entire dataset. Each extracted patch is re-represented
using the learned features (centroids) through a non-linear
mapping function. Finally, each image is reconstructed by
collaging their patches and “pooling” (or summing) those
collaged patches together over the 4 quadrants (divisions) of
the image. The paper claims to have obtained correct clas-
sification of over 79% using such preprocessing and a simple
final linear classifier (e.g., SVM with linear kernel).

In our implementation of the proposed preprocessing frame-
work, we slightly modify the pooling procedure from over 4
quadrants to over 9 divisions. This has increased the pre-
diction accuracy by 1.5% without incurring much additional
computational complexity. We also experiment with several
parameters of the preprocessing (i.e., the number of ran-
dom patches to extract for feature learning, the dimension
of each patch, and the number of clustering centroids) and

select the best set of parameters for our classification. For
classification, we additionally experiment with a variety of
linear classifiers on the preprocessed data: linear SVM, naive
Bayes, multinomial logistic regression (MLR), and random
forest. Finally, we propose an ensemble learning approach
by combing our two best classifiers: linear SVM and MLR.
Our final prediction accuracy on the test set is over 57% (and
almost 58%) with ensemble learning, which is a marginal im-
provement over a simple linear SVM classifier.

2. BACKGROUND
The current state-of-the-art classification on the CIFAR-

10 dataset has attained more than 90% performance using
deep learning techniques [5, 2]. Convolutional neural net-
works have also shown performance near that of human’s
manual classification in the high 80% and reaching 90% [4].
However, those methods often make use of heavy-duty ma-
chines with expensive hardware (e.g., a dedicated GPU) and
requires a very long learning time, in the matter of days [4].
Therefore, in this project, we are not seeking performance or
methods that are comparable to those of deep learning and
convolutional neural networks1 due to limited resources. We
are rather looking for an approach that is relatively simple
to implement, that can be run on a laptop computer in the
matter of hours, and at the same time gives results that are
significantly better than a naive approach (which could be
thought of as running a straightforward linear classifier on
the raw data or just random guessing).

To this end, we propose to implement and experiment
with the method proposed by Coates et al. [1], which we
deem simple and implementable. The approach leverages
the bulk of its work on data preprocessing to learn and ex-
tract image features, which is not typically computationally
expensive. Yet, it was claimed to have attained an impres-
sive performance of 79.6% by running a simple SVM classi-
fier on the preprocessed data. Through this, we also wish to
test if more sophisticated classifiers (e.g., ensemble learning)
could be used to improve on a simple linear classifier.

3. UNSUPERVISED FEATURE LEARNING
& EXTRACTION

Here, we implement the preprocessing framework proposed
by Coates et al. [1] that extracts and learns the image fea-
tures in an unsupervised fashion. We also customise the
proposed framework to slightly improve the classification ac-
curacy without adding much computational complexity.

The framework consists of two main components: the
(unsupervised) feature learning and the feature extraction
component. Fig. 2 illustrates the high-level pipeline of
the preprocessing framework. The feature learning compo-
nent learns features from random patches extracted from the
training images. The feature extraction component system-
atically extracts overlapping patches (convolutional extrac-
tion) from each image in the entire dataset to re-represent
them in a sparser feature space, which in turn makes train-
ing a linear classifier more e↵ective.

1A resourceful website maintained by Rodrigo Be-
nenson that tracks state-of-the-art classification re-
sults on the CIFAR-10 dataset and others is at:
http://rodrigob.github.io/are_we_there_yet/build/

classification_datasets_results.html.

Raw ��� Data

Extract
Random
Pat���ches

Wh ���itening

K-means
(���Triangle)������

Extract
Feat ���ures Standardize

Pre���processed
Data

Normalizing

Feature Learning
(Training Set)

Feature Extraction
(Training + Test Set)

Figure 2: Steps performed by the preprocessing

framework to learn and extract image features.

3.1 Feature Learning
For each image in the training set, we randomly extract P

unique patches that may or may not be overlapping. Each
patch has dimension w⇥w and d channels (d = 3 for RGB)
where w is the receptive field (RF) size. Each patch is thus
represented by a RN (N = w ⇥ w ⇥ d) dimensional vector.
We then normalise each patch by subtracting from the mean
and dividing by its standard deviation, which helps adjust
the local brightness and normalise the contrast.

Coates et al. [1] suggest that further whitening the patches
would improve accuracy. Image whitening is basically a de-
correlation transformation that transforms each patch into a
matrix whose covariance matrix is the identity matrix. The
rationale of whitening is that the raw input is usually highly
redundant because adjacent pixels are typically highly cor-
related. Thus, the goal of whitening is to make the pixels
less correlated and have the same variance. According the
authors, whitening improves performance because cluster-
ing algorithms are blind to correlations. Therefore, we also
make use of image whitening in our framework.

For unsupervised learning on the random patches, Coates
et al. [1] concluded that K-means clustering is the best op-
tion (compare to alternatives such as GMM). This is because
not only is it much faster, it also produces higher accuracy
through their experimented cross-validation. Hence, we also
adopt K-means clustering in our preprocessing to learn the
features from the random patches.

We perform K-means clustering on the set of randomly
extracted patches using a specified K. We then represent
each patch using the following non-linear mapping (refer to
as “K-means (triangle)”or “soft K-means” in [1]). Given the
K centroids Ci (1  i  K) of the K clusters, we map each
input patch x into a K-dimensional vector f : RN 7! RK

using the following non-linear function:

fi(x) = max{0, µ(z)� zi}, (1)

where zi = ||x� Ci||2 and µ(z) is the mean of vector z.
Fig. 3 shows the visualisation of the K = 400 centroids

learned from the training set with P = 50 random patches
per image. Because our training set has 4,000 images, there

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Figure 3: Visualisation of the 400 centroids of the

K-means clustering performed on 200000 random

patches extracted from the training images.

are 200,000 random patches in total. It shows that the
learned centroids correspond to certain characteristic fea-
tures of the images such as background colours (red, blue,
green, yellow, etc.) and separating edges or corners.

3.2 Feature Extraction
For each image in the training and test set, we perform

convolutional extraction by extracting (n�w+1)2 patches,
where each patch is of dimension w ⇥ w and n = 32 is
the original dimension of the input image. Convolutional
extraction systematically extracts overlapping patches such
that any two adjacent patches (horizontally or vertically)
have (w � 1) ⇥ w pixels in common (i.e., they are di↵erent
by w pixels horizontally or vertically). For each extracted
pixel, we represent it in the K-dimensional feature space via
the non-linear mapping described by Eqn. (1) above.

We then re-represent each image by collaging their ex-
tracted (overlapping) patches as described in Fig. 1 of [1].
That is, for such collaged image, Coates et al. [1] pooled over
the 4 equal quadrants of the image to form the final feature
vector representation, where“pooling”means taking the sum
of all the elements in each quadrant. This is achieved diving
the image into four equal parts (or quadrants) and then sum-
ming up the patches in each part. Pooling helps reduce the
dimensionality of the final image representation and makes
classification more e�cient and e↵ective. We call the num-
ber of such divisions Q. After experimenting with pooling,
our experiments showed that by increasing the number of
divisions to Q = 9 (from Q = 4), we gain about 1.5% in
classification accuracy. We thus use the 9-division pooling
in our subsequent experiments.

The final number of features of each re-represented image
is 9K, where K is the number of centroids of the K-means
clustering. Finally, we standardise all the feature vectors
in the training and test set separately, which is a common
practice in object recognition.

4. CLASSIFICATIONS

In this section, we vary the parameters P,Q and K and
report the complexity and performance (i.e., prediction ac-
curacy) tradeo↵. We also test several simple linear classifiers
on the preprocessed images and report their cross-validation
performances. We finally propose ensemble learning models
that marginally improve the performance by combining cer-
tain simple linear classifiers together.

4.1 Feature Learning Complexity
Table 1 shows the feature learning complexity vs. per-

formance tradeo↵, where the performance was recorded by
classifying the test data using a simple L2 linear SVM model
with cost � = 300. The complexity measures the time
(in seconds) required to run each sub-component (i.e., each
“box”) in the preprocessing pipeline (depicted in Fig. 2) as
well as the whole pipeline (“Total”). The following machine
specifications were used to run these experiments:

• Processor: 2.3 GHz Intel Core i7

• Memory: 8 GB 1600 MHz DDR3

• Operating system: Mac OS X

• Development environment: Preprocessing – MATLAB,
Cross-validation Classification – R.

In Table 1, “P. Ext” stands for patch extraction time,
“Norm.” stands for normalisation time, “F. Ext.” stands
for feature extraction time, and “Std.” stands for standard-
isation time. Table 1 suggests that RF size of w = 6 is just
right for the classification task, and making it larger doesn’t
really help. This is also what was concluded by Coates et

al. [1]. We get the best accuracy when the K = 1600 and
P = 400000. We finally see that increasing Q from 4 to 9
increases the performance by almost 1.5% while the corre-
sponding increase in complexity is rather marginal. Thus,
for the subsequent experiments, we use the following learn-
ing parameters: w = 6, P = 400000, Q = 9, and K = 1600.

4.2 Cross-validation Training
To select an appropriate classifier, we perform a 5-fold

cross-validation on the preprocessed training images. We
use the following classifiers to benchmark the performance
of the cross-validation (CV) training.

1. L2 SVM: a simple SVM model using linear kernel2

and L2 regularisation with cost � = 4003;

2. RF (n = 500): a random forest with 500 trees;

3. NB: a simple naive Bayes classifier;

4. Multinomial LR: a simple multinomial logistic re-
gression (without kernel) with cost � = 400.

The results of the cross-validation averaged over 5 folds
are shown in Table 2. The averaged prediction accuracy is
shown in the second column and the training and prediction
2Because the preprocessed images already have a large num-
ber of features, we intentionally do not use any kernels for
the SVM. Our experiments also show that SVM without
kernel outperforms that with kernel.
3We also experimented with various values of � ranging from
� = 300 to � = 500 and found out that � = 400 gives the
best performance.

RF Size (w) K P Q P. Ext. Norm. Whitening K-means F. Ext. Std. Total Accuracy

6 1,600 400K 4 155.19 1.28 0.84 274.70 127.91 1.10 561.02 54.71%
6 1,600 400K 9 162.40 2.70 1.20 262.39 124.68 2.73 556.10 56.20%
6 500 200K 9 81.58 0.44 0.44 44.69 46.09 0.34 173.57 54.13%
8 1,600 400K 9 160.98 6.78 1.77 356.05 142.17 4.56 672.31 53.75%

Table 1: Time complexity and performance tradeo↵ in choosing learning parameters.

time totalled over 5 folds (measured in seconds) are shown
in the third column. Table 2 shows that simple L2 SVM
performs the best with more than 50% accuracy, which is
followed by the Multinomial LR model. On the other hand,
the two most time-consuming methods (to train and predict)
are RF and Multinomial LR, respectively.

Methods 5-Fold CV Training & Pred.

L2 SVM 50.75% 922.85
RF (n = 500) 44.35% 6,104.64
NB 39.27% 605.96
Multinomial LR 45.52% 5,614.79

Table 2: Cross-validation results on the training set.

For all these classifiers, the three most commonly confused
classes are (4, 6) or (cats, dogs), (1, 9) or (airplanes, ships),
and (2, 10) or (cars, trucks) (both ways each).

4.3 Ensemble Learning
We experiment with ensemble learning by combining the

individual classifiers in Sect. 4.2. We particularly use the
following three classifiers: L2 SVM, NB, and MLR (multino-
mial logistic regression). We decided not to use RF because
from our experiments, RF is very time-consuming and yet
slightly worse than MLR. The ensemble learning was com-
bined using a simple multinomial logistic regression without
regularisation (� = 0). Table 3 shows the averaged results
of the 5-fold CV ensemble learning.

Methods 5-Fold CV Training & Pred.

L2 SVM + NB 52.78% 1,823.81
L2 SVM + MLR 54.47% 5,819.87
L2 SVM + NB + MLR 55.62% 8,627.98

Table 3: 5-fold cross-validation (CV) of ensemble

learning on the training set.

Table 3 shows that a 3-way ensemble of linear L2 SVM,
MLR, and NB gives the best and an ensemble of L2 SVM and
NB gives the lowest CV performance. The 3-way ensemble
is also the most costly model to learn. The ensemble of L2
SVM and MLR stands in the middle.

Table 4 shows the performance of the ensemble models on
the actual test set compared to that of the best simple linear
classifier (L2 SVM) on the same test set. Interestingly, Table
4 shows that a 3-way ensemble performs worse on the test
set than the simple SVM. This is probably because the NB
classifier has significantly overfitted the training data. On
the other hand, an ensemble of SVM and MLR marginally
improves the performance by 0.02%.

For comparison purpose, Table 4 also shows the perfor-
mance on test set using the raw original images (i.e., with-
out preprocessing) and an SVM classifier using RBF kernel

(� = 0.00033 and � = 1). It shows that preprocessing has
significantly increased the accuracy by more than 15%.

Method Accuracy

Ensemble: SVM + MLR 57.810%
Ensemble: SVM + MLR + NB 57.752%
L2 SVM (� = 400) 57.790%
SVM (RBF kernel on raw data) 42.781%

Table 4: Performance on the actual test set.

5. CONCLUSION
In this project, our main motivation is to implement a fea-

sible (and non-trivial) classification method for the CIFAR-
10 dataset that fits well with the timeframe and resource
constraints of the project execution. Through that, we also
wish to experiment with the various parameters and settings
of such implementation to investigate the tradeo↵ between
model complexity and improvement in performance. To this
end, we leverage on an image preprocessing approach pro-
posed by Coates et al. [1] that has been shown to signif-
icantly improve on the CIFAR-10 classification. Our im-
plementation of the preprocessing has indeed considerably
improved on the baseline (i.e., SVM on the raw data) by
more than 15%. For classification on the preprocessed im-
ages, we conclude that a simple SVM with linear kernel is
good enough for learning and prediction. A more sophisti-
cated ensemble learning doesn’t add much benefit in terms
of prediction accuracy on the test set, and yet incurs signif-
icant cost. This is in accord with the conclusions in [1].

On the other hand, our main contribution is the modifi-
cation of image re-representation method at the end of the
preprocessing pipeline. That is, instead of pooling over 4
quadrants as in [1], we pool over 9 divisions, which in turn
shows an increase in performance of 1.5% without adding
much computational cost to the feature learning.

The preprocessing works because it has extracted and
summarised the salient features of the images that are typ-
ically captured in small “patches”, e.g., edges, corners, and
contours. Patch size seems to matter (as most features are
rather small, such as eyes, ears, and body features of an
animal) and the number of patches also matters (typically,
the more, the better). Pooling over 9 divisions instead of 4
helps because more features are conserved rather than sub-
sumed by such pooling. Finally, the ensemble learning only
improves marginally on the test set probably because the
individual classifiers have significant overlapping predictions
(both correct and wrong labels) such that combining them
doesn’t add much advantage. In retrospect, we could also
have used a di↵erent approach to combine SVM and MLR,
e.g., using an SVM with RBF kernel and tuned parameters
rather than a multinomial logistic regression. This might
have improved the accuracy of the ensemble learning.

6. REFERENCES
[1] A. Coates, A. Y. Ng, and H. Lee. An analysis of

single-layer networks in unsupervised feature learning.
In International Conference on Artificial Intelligence

and Statistics, pages 215–223, 2011.
[2] I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville,

and Y. Bengio. Maxout networks. In Proceedings of the

30th International Conference on Machine Learning

(ICML-13), pages 1319–1327, 2013.
[3] A. Krizhevsky and G. Hinton. Learning multiple layers

of features from tiny images. Computer Science

Department, University of Toronto, Tech. Rep, 2009.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton.

Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.
[5] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus.

Regularization of neural networks using dropconnect.
In Proceedings of the 30th International Conference on

Machine Learning (ICML-13), pages 1058–1066, 2013.

APPENDIX
Naassih was in charge of coding and running the experiments
on image preprocessing in MATLAB. Joe was in charge of
coding and running the experiments on classification and
ensemble learning (both CV and on the test set) in R. Joe
was in charge of compiling and writing the final report.

	Introduction
	Background
	Unsupervised Feature Learning & Extraction
	Feature Learning
	Feature Extraction

	Classifications
	Feature Learning Complexity
	Cross-validation Training
	Ensemble Learning

	Conclusion
	References

