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- Machine Learning (ML) engineer at SAP
since July 2017

- Received Ph.D. in Information Systems
from Singapore Management University
(SMU) in Feb. 2018

- Thesis work on ML methods for urban
problems using spatiotemporal data

- Avid traveler, adventurer and aspiring
writer/photographer
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Big Data and the Big
CtleS >.S'olve E?ig Cnallenges in Big

Cities using Big Data.

'Heilig, G. K. (2014). World urbanization prospects the 2014 revision. United Nations, Department of
Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections
Section, New York.




LEARNING

Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce Air

Pollution, ...
Urban Data Analytics
Data Mining, Machine Learning, Visualization
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Urban Data Management
Spatio-Temporal Index, Stream, TrA]ectory and Graph Data Management..

......99

Human Traffic Air  Meteorolo Social Energy Road .
mobility Quality gy  Media Networks | Spatiotemporal
T Data
Urban Sensing & Data Acquisition

Participatory Sensing, Crowd Sensing, Mobile Sensing

PREDICTION

NI

S S S S S S S S

The Environment > ‘Framework’?

> Machine
learning?
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Urban
General Framework for Urban Computing Research Computing
Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban

computing: Concepts, methodologies, and applications. ACM People
Transactions on Intelligent Systems and Technology

(TIST), 5(3), 38.

Cities

“...unlocks the power of big data collected in urban

spaces to solve major issues cities face today.”

What is this talk about?




Dynamic (e.g.,
sensors, CCTV)

Traffic Speed

Distribution

$OI_S' X Eeal-(’;ime - of Incidents
Cmi B prediction L)CE LINE DD WDJ £ over urban

Prediction
Areas

Spatiotemporal Data Properties and
Problems Addressed
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Traffic Data and Problem

Speed reading every 5 minutes on some road
segments in US cities (Pittsburgh and
Washington, D.C.)

. SpatiaIIK infer speed values for the whole
network (unobserved locations)

* Temporally infer speeds at future time steps

- Fine-grained inferences = Needs accuracy and
efficiency for real-time use cases

* Main idea: Efficient clustering of
spatiotemporally correlated sensors using
Gaussian process

- “Everything is related to everything else, but near

things are more related than distant things” —
Tobler’s first law of geography (Tobler, 1970)



What is a Gaussian Process (GP) and Why?

50

* GP is a non-linear regression technique that s
encapsulates ‘closeness’ in space and time via g
kernel functions — which can further
incorporate other features
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Yu, K., & Chu, W. (2008). Gaussian process models for
link analysis and transfer learning. In Advances in Neural _ T § : (2) () (2) (3)
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Longitud ﬁitu;e Eescr‘itpion d Tatitud dinates of the t dpoints (nodes) of @ + E k(f(J) f(J) ) Nod ise f ®
ongitude, latitude ongitude and latitude coordinates o e two endpoints (nodes) of a segment. ’ AR _
Segment length Length (in miles) of a segment. (?.L,’U) (u U ) ode-wise eatures
Number of lanes The number of lanes a segment has in each direction.‘ ] \ ’
Direction Direction of a segment: northbound, southbound, eastbound, or westbound.‘
Degree Degree of two end nodes of an edge (segment).‘ Y

Betweenness Edge betweenness centrality of a segment.‘
One-way Is this segment one-way? ‘
Road type One of the 10 defined types: avenue, boulevard, bridge, lane, place, ramp, road,‘

Edge-wise features @
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Experimental Results:

Baselines and Comparison

Le, T. V., Oentaryo, R,, Liu, S., & Lau, H. C. (2017). Local Gaussian Processes
for Efficient Fine-Grained Traffic Speed Prediction. IEEE Transactions on Big

Data, 3(2), 194-207.
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Incident Prediction for

Urban Law

Enforcement



Urban Law Enforcement

o P
* Densely populated urban areas increasingly puts e Y,
pressure on law enforcement agency’s manpower ¢ & ° =o' Sengkang
trying to meet ever-rising demands S FX
Ang Mo Kio North @
° Ang Mo Kio _
® - South\ e e

e Large databases of crime incidents provide fine-
grained details:

- Spatiotemporal (where and when) ®

- Context (textual description, urgency classification, type and P A e o ®

maed On any given day, no more than « fraction of
the incidents ‘fails’ (not responded on time)

police response) | _ ‘ \ o ) e

a ) ° «=hs Toa Payoh \ N
* Itis possible to make high-precision predictions of o Kampong-Java— o
incident occurrences using ML | i N, @ Geylang
Bukit Timah \ et J - O



Crime Data and Context

Real-world data provided by a national law

enforcement agency over multiple years

Contains more than 500,000 reported '
incidents (e.g., from emergency calls)

Each incident has: location, timestamp, type,

urgency classification, dispatch and response
information (incl. response time) / I I‘ E REPOR I
Metadata containing neighborhood/sector A R

boundaries and police deployment Date:
information

Ang Officer: Prepared By:




GP Kernel and Features

The spatiotemporal kernel function between bins i and j:

k((wza yzat’l,)v (wja Yjs t_?)) - ks((x'&a y'&)a (mjayj))kt(tutj)a
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Matern/RBF kernel: Spatial X Temporal

(lon, lat) of
the centroid

k((ﬂ?z, Yis t’l,a f?,), ("B]a Zj, tja fj))

= k((zs, yi ti), (24,95, t5)) + Z k(fi, £5),
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_Feature Description
\ f } location Longitude and latitude coordinates of the incident
Y hours The integer hours of the incident’s occurrence time (0-23) |

is_weekend Binary variable whether the incident occurs on the weekend )
neighborhood Categorical variable specifying the incident’s neighborhood
sector Categorical variable specifying the incident’s sector

Linear kernel: Additive features




Experimental Results: Baselines and Comparison

Both
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* Linear regression ¢ Support vector T e 10 L To5o 1040
(LM) machine (SVM) long
* Random forest * Gradient boosting Comparing the predicted and actual number of incidents
(RF) regression (GBR) (both for weekday + weekend) for one particular test week




Urban Computing:
IELGENENR

3 B: Big Data, Big Challenges, Big Cities

3 M: Data Management, Data Mining,
Machine Learning

3 W: Win-Win-Win for People, City, and the
Environment

3 BMW
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Appendix:

The Framework

Spatiotemporal
Data

> Trajectory clustering

> Matrix factorization

> Incident types
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