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Abstract

This thesis proposes a general solution framework that integrates methods in machine

learning in creative ways to solve a diverse set of problems arising in urban environments.

It particularly focuses on modeling spatiotemporal data for the purpose of predicting

urban phenomena. Concretely, the framework is applied to solve three specific real-world

problems: human mobility prediction, traffic speed prediction and incident prediction.

For human mobility prediction, I use visitor trajectories collected a large theme park

in Singapore as a simplified microcosm of an urban area. A trajectory is an ordered

sequence of attraction visits and corresponding timestamps produced by a visitor. This

problem has two related subproblems: (spatial) bundle prediction and trajectory predic-

tion. In the first problem, I apply the framework to predict a bundle (i.e., an unordered

set) of attractions that a given visitor would visit given a time budget. In the second

problem, the framework is applied to predict the visitor’s actual trajectory given the

current partial trajectory and time budget. In both problems, I apply the methods of

trajectory clustering, hidden Markov model, revealed preference learning and (inverse)

reinforcement learning in the integrated framework.

In traffic speed prediction, I wish to predict the spatiotemporal distribution of traffic

speed over urban road networks. To this end, I propose local Gaussian processes which

combine non-negative matrix (NMF) factorization with Gaussian process (GP) in order

to enhance the efficiency of model training such that the solution could be deployed

in real-time use cases. NMF is essentially a spatiotemporal clustering technique. The

solution is extensively evaluated using real-world traffic data collected in two U.S. cities.

The incident prediction problem is about predicting the distribution of the number of

crime incidents over urban areas in future time periods. Because of its similarity to

the traffic prediction problem above, its solution greatly benefits from the GP model

developed earlier. Particularly, the GP kernel function is inherited and extended to

model the distribution of incidents in urban areas and their features. The proposed

solution is evaluated using real-world incident data collected in a large Asian city.

Conceptually, this thesis uses big data and machine learning techniques to solve three

separate urban problems, whose contribution belongs to the large category of urban com-

puting. At the core, its technical contribution lies in the unification of separate solutions

tailored to those problems into an integrated framework that reasons with spatiotempo-

ral data and, thus, is highly generalizable to other problems of similar nature.
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Chapter 1

Introduction

1.1 Big Data & the City

Spatiotemporal data have become ubiquitous today with the explosive growth of sensor

networks, “smart” connectivity and mobility technologies, the Internet of Things (IoT)

and autonomous vehicles [5, 22]. The pace of spatiotemporal data generation has been

advancing at an ever increasing speed and finer-grained scale. That has enabled big data

captured in densely populated urban environments to provide multi-scaled perspectives

at the complex behaviors of urban systems. Indeed, the voluminous and feature-rich

wealth of such spatiotemporal data can be turned into valuable insights that can be

used to make cities more efficient, safer and improve the quality of life of urban dwellers.

This is a significant utility of big data for social good as it has been forecast by the

United Nations that 66% of the world’s population will be living in cities by 2050 [41].

Rapid progress of urbanization around the world has led to the emergence of megacities

and engendered significant challenges in urban environments, in which big data carries

the promising solutions [22, 112]. Consider the example depicted in Fig. 1.1, which

visualizes a massive amount of GPS trajectories (approximately 180,000 trips) produced

by over 1,000 taxicabs in the city of Shenzhen, China in September, 2009. A trajectory

is an ordered sequence of spatial locations (longitude and latitude) and timestamps

sampled by a GPS tracker every few seconds. A taxicab reports its trajectory in real-

time to a central server for fleet management purposes as long as the tracker is turned

on. Taxi trajectory is a typical example of spatiotemporal data collected in an urban

1



Chapter 1. Introduction 2

Figure 1.1: Visualization of almost 180,000 taxi trip trajectories in Shenzhen, China
for the whole month of September, 2009. Each trajectory is a sequence of fine-grained
GPS samples of locations and timestamps from the origin to the destination of the trip.
Brighter areas correspond to higher and denser mobility demands in the road network.

environment. It tells a rich story about the urban residents’ daily mobility patterns such

as where the crowds are at what time. It informs the city planner how to design a better

public transportation system. It gives the real-time traffic flow information that can be

used for routing and avoiding congestions. It also records the real-world behaviors of

taxi divers’ cruising, picking up and delivering strategies that can be used to effectively

train, e.g., an autonomous driverless car.

The overarching theme in this thesis is to use spatiotemporal data to make cities

smarter and safer. In particular, I propose three specific prediction tasks based on the

provided real-world data and show how to solve them: human mobility prediction, traffic

speed prediction and crime incident prediction. These tasks are ultimately a means to

an end, which could be urban crowd management, traffic congestion management, or

effective deployment of law enforcement resources. However, this thesis does not have

the ambition to provide “full-stack” solutions to those big problems due to its limited

scope and their sheer complexities, where each would deserve a thesis of its own. On

the other hand, by tackling those challenges at the core, a common pattern of problem

solving emerges that can be synthesized into an integrated solution framework that could

be useful for other problems of similar nature. This is the purpose of the thesis.
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Figure 1.2: Relationship between the important concepts used in this thesis. Exam-
ples (used in the thesis) of each of the concepts are also illustrated.

As useful as they are, big spatiotemporal data pose two particular technical chal-

lenges. The first is the violation of the basic assumption of independent and identically

distributed (i.i.d.) of observations due to the nature of space-time processes (i.e., ob-

servations that are “nearer” to each other should be more similar). The second is the

scalability issue of big data in general. This thesis attempts to address those two chal-

lenges via the applications of established machine learning methods in creative ways.

Briefly speaking, the first problem can be tackled using kernel methods, and the com-

plexity of the second one can be significantly reduced via spatiotemporal clustering.

Moreover, spatiotemporal data occurred in urban environments require an additional

layer of modeling that captures the essence of the built environment underlying it. This

is also adequately addressed in the thesis, e.g., via the design of kernel functions.

Concretely, this thesis develops a general machine learning framework to solve spa-

tiotemporal problems (a.k.a “phenomena”1) occurred in urban environments. An urban

environment is one typically characterized by high population density with complex

human mobility patterns and advanced infrastructures (e.g., multimodal transportation

networks) [112]. A spatiotemporal phenomenon is one that underlies a spacetime pro-

cess, which in turn generates spatiotemporal data. A spacetime process is a stochastic

process indexed by spatial locations and temporal labels. Thus, spatiotemporal data

are multidimensional (and often multivariate) data that encode both the spatial and

temporal dimension of the underlying phenomenon [50]. Examples of spacetime pro-

cesses include a rational agent’s decision-making process that generates a trajectory

(Chapters 4 and 5 explore this), or Gaussian processes that generate observed traffic

speeds and distribution of crime incidents in a big city (Chapters 6 and 7 have more

on this). No matter what process it is, the goal of this thesis is unify solutions tai-

lored to those problems into a common integrated framework. Fig. 1.2 illustrates the

relationship between important concepts used in this thesis.

1To be used interchangeably throughout the thesis.
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Figure 1.3: Summary of the machine learning models, spatiotemporal data and prob-
lems in urban environments studied in this thesis and their relationships.

Fig. 1.3 summarizes the machine learning models, spatiotemporal data and problems

in urban environments studied in this thesis and their relationships. In essence, it is a

combination of machine learning models and spatiotemporal data that solves a diverse

set of problems in urban environments. Synthesized from those methods and data,

a common solution framework can be integrated that “abstracts away”2 the peculiar

features of each of the individual problems. I call this an integrated framework

because it provides a high-level abstraction of the problem solving process that can be

generalized and extended to solve other problems of similar nature. In Fig. 1.3, even

though the data and their corresponding problems are intrinsically tied together, the

separation of data from problems gives rise to the synthesis and abstraction of processes

that make up the integrated framework as will be elaborated in Chapter 3. In the

next sections, I discuss in detail the components of Fig. 1.3: machine learning models,

spatiotemporal data and problems in urban environments.

2In common computer science parlance, that means intentionally obscuring the details of how some-
thing works internally in order to simplify it conceptually.
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1.2 Machine Learning Models

Tom Mitchell gave a classic definition of machine learning that says: “A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P , if its performance at tasks in T , as measured by P , improves

with experience E” [71]. Here, the experience E is the provided dataset and the task T

is the prediction of the instances of the spatiotemporal phenomenon under study. The

performance measure P varies depends on what exactly is being predicted.

This thesis particularly explores machine learning models in the context of observa-

tional spatiotemporal datasets. Unlike classical statistics, with spatiotemporal data,

the i.i.d. assumption is immediately violated. This is because the fundamental nature

of spatiotemporal data is that observations at nearby locations in space and time are

similar. This gives rise to the applications of kernel methods3 such as Gaussian pro-

cesses (GPs) (Chapters 6–7) that encapsulates such nearness without compromising on

robustness. Furthermore, GP falls under the class of Bayesian methods as it allows for

inference (i.e., prediction) as new evidence (i.e., experience) comes in without having to

retrain the model. This proves essential for an application discussed in Chapter 7.

Spatiotemporal data can be modeled as a time series if they are produced by a sequence

of actions (or “trajectory”) taken by single actor (or agent). In this respect, predicting

a sequence of spatiotemporal data boils down to modeling the sequential decisions being

made by the actor. To this end, reinforcement learning [96] lends itself naturally

to model such sequential decision-making (Chapter 5). Sequence alignment algorithms

such as the edit distance [12] then becomes a viable performance measure. On the other

hand, sequential decisions made under a certain time bound constraint also reveal the

actor’s preferences as the more preferred actions are more logically done first. Such

big data of sequential decisions coupled with the classical economic theory of revealed

preference [87] gives rise to new machine learning models that can learn and predict the

agent’s behaviors under different budget constraints (Chapter 4). Furthermore, the link

between sequential decisions and preferences also gives rise to an application of inverse

reinforcement learning [84] for trajectory prediction as discussed in Chapter 5. These

are among the machine learning models employed in this thesis.

3The “kernel trick” largely solves the i.i.d. problem. See Sect. 2.4.2.
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1.3 Spatiotemporal Data

Kisilevich et al. [50] gives a classification of spatiotemporal data along the two axes of

space (static vs. dynamic) and time (snapshots vs. time series), which gives rise to four

types of spatiotemporal data. Using this classification, the real-world data employed in

this thesis fall under two types: static × time series and dynamic × time series.

As depicted in Fig. 1.3, the first type (dynamic × time series) represents the spa-

tiotemporal trajectories typically produced by RFID-enabled devices or GPS trackers.

This manifests in the sources of data provided in Chapters 4 and 5, where trajectories

of visitors to a large theme park are collected via RFID-enabled devices. Whereas, the

second type (static × time series) represents a time series of “readings” at static geo-

referenced locations. This is typically produced by fixed-location sensors that monitor

the phenomenon of interest at regular intervals, such as traffic speed sensors discussed in

Chapter 6, or the incident reports (e.g., based on emergency calls) in Chapter 7. Specif-

ically, the incidents (or events) can be viewed as a time series because if we bin them

into a spatial grid and count the number of incidents per grid square over time, this is

analogous to having a fixed-location “sensor” at each square that counts the number of

incidents at each time step. Chapter 7 elaborates more on this data processing.

1.4 Spatiotemporal Phenomena

Motivated by some of the most prominent problems cities face today and the availability

of rich real-world data, this thesis explores three big problems as depicted in Fig. 1.3.

The first problem is human mobility prediction, which itself has two subproblems.

In this problem, I seek to develop decision-making models for rational agents who visit

a finite set of points of interest (POIs) in space given a limited time budget. The first

subproblem (Chapter 4) seeks to predict an unordered set of POIs (called a “bundle”)

that the agent would visit. The second one (Chapter 5) predicts the precise sequence of

visits (called a “trajectory”). Such ability to model and predict spatiotemporal behaviors

can give rise to models of crowd distribution in urban areas, which could in turn assist

a city planner in real-time crowd management. This thesis tackles the problem in a

simplified version of an urban system, in which a real-world theme park and its visitors

are used to represent a microcosm of a large urban area.
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The second problem is traffic speed prediction (Chapter 6), which seeks to develop an

accurate predictive model for how traffic speed evolves over space (i.e., the road network)

and time in rhythm with the urban residents’ daily activity patterns. To this end, I

develop “smart” learning strategies that use matrix factorization to localize subsets of

relevant training data in order to reduce the training set size. This effectively makes real-

time learning and predictions of traffic speed feasible. Such ability can effectively assist

traffic routing and crowd management, which in turn helps reduce urban congestions.

The third problem is incident prediction (Chapter 7), in which an accurate generative

model for the distribution of crime incidents over space and time in a city is sought for.

This has significant utility for the urban law enforcement agency to plan and deploy

their resources efficiently and effectively in anticipation of emergent incidents. It also

plays a crucial role in stress testing the agency’s resource planning model in diverse

scenarios in order to gauge the quality of their model. Due to its similarity to the traffic

speed prediction in terms of data structure, the generative model in this problem can

significantly benefit from the model developed in Chapter 6 as will be shown.

1.5 Urban Environments

An urban environment is a built environment that provides a setting for human ac-

tivities in urban areas. Urban environments are typically highly developed, i.e., there

is a high density of man-made structures such as houses, commercial buildings, roads,

bridges, and railways and their interconnectedness [38]. In a broad sense, urban environ-

ments encompass the interactions of both the physically and socially built environments

(e.g., demographics, cultures, value systems, laws and policies, etc.) under which urban

activities take place [38]. In this thesis, the urban environments considered are restricted

only to the physical environments underlying the spatiotemporal phenomena.

In this respect, the main challenge here is that the spatiotemporal data collected are not

immediately usable. That is, they have to be mapped to the physical environment under

which the phenomenon happens in order to be useful (for feature extraction and training

the machine learning models). Such an environment represents the infrastructure under-

lying the phenomenon and requires an additional layer of data modeling. In the human

mobility prediction problem, it is the “frame of reference” under which a visitor makes
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their decisions (e.g., how to assign values to POIs and estimates their costs), which

can be modeled using a hidden Markov model (HMM). In the traffic speed prediction

problem, it is the road networks and their spatial features that underlie the traffic flows,

which can be modeled using a directed graph coupled with kernel functions. Similar

technique (i.e., kernel function) can be used to model the urban areas (with artificial

boundaries and features) in the incident prediction problem.

1.6 Contributions & Organization of the Thesis

On a high level, the contribution of this thesis lies in the field of urban computing,

which “embeds computational intelligence into the built environment via unobtrusive

and ubiquitous urban sensing” [38]. Or more succinctly, Zheng et al. [112] puts it as

“unlocking the power of big data collected in urban spaces to solve major issues cities

face today”. In particular, I make the following contributions in this thesis:

• I propose an integrated framework that combines machine learning methods to

solve a diverse set of spatiotemporal problems in urban environments. This is

achieved by synthesizing the common features of the individual problems and

datasets and abstracting their peculiarities. The framework can be easily extended

to solve other problems of similar nature in urban settings.

• The framework models the built environments underlying the phenomena and

addresses the scalability issue of big data using spatiotemporal clustering.

• The framework is applied to solve three specific problems in urban environments:

human mobility prediction, traffic speed prediction and incident prediction.

• All the problems discussed in this thesis make use of real-world data to vigorously

evaluate the effectiveness of the proposed solution framework.

• Therefore, in this respect, the contribution of this thesis is to extend the Urban

Data Analytics aspect, which comprises of data mining, machine learning and

visualization, of the General Framework for Urban Computing Research proposed

by Zheng et al. [112]. This is achieved by making it an realizable problem-solving

process using machine learning. Sect. 2.1 explains more on this.
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More concretely, the technical contributions of each chapter are given as follows:

• Chapters 4–5 use a theme park setting as a microcosm of an urban area. Based

on visitors’ trajectories, I apply the integrated framework to solve two related

subproblems: (a) Predict a finite set of POIs that a visitor chooses to visit given

a time budget, and (b) Predict a visitor’s trajectory taking into account both the

uncertainty of their preferences and time budget. In both problems, trajectory

clustering is used to model the heterogeneity of the visitor population.

• In Chapter 4, trajectory data are used to extract the visitors’ “revealed prefer-

ences” via a revealed preference learning model. A hidden Markov model (HMM)

is then proposed to model the “frame of reference” under which a visitor makes

their decisions. Based on which and the given time budget, the classic 0/1 knap-

sack problem is used to predict the optimal spatial bundle that the visitor chooses.

This chapter is adopted from the following publication:

– Truc Viet Le, Siyuan Liu, Hoong Chuin Lau & Ramayya Krishnan. Predict-

ing Bundles of Spatial Locations from Learning Revealed Preference Data.

The 14th International Conference on Autonomous Agents and Multi-agent

Systems (AAMAS 2015). Istanbul, Turkey.

• In Chapter 5, HMM is again used to model the environment under which a visitor

makes their sequential decisions. Decision models based on reinforcement learning

(i.e., Markov decision processes) are proposed to model and predict the visitor’s

trajectory under budget constraint. For this purpose, inverse reinforcement learn-

ing is used to model the uncertainty of the visitor’s preferences. Contents in this

chapter are adopted from the following publication:

– Truc Viet Le, Siyuan Liu & Hoong Chuin Lau. A Reinforcement Learning

Framework for Trajectory Prediction under Uncertainty and Budget Con-

straint. The 22nd European Conference on Artificial Intelligence (ECAI

2016). The Hague, Netherlands.

• Chapter 6 solves a very common urban phenomenon: traffic speed prediction. In

particular, I attempt predict the traffic speed distribution over road networks and

time periods. To this end, I use spatiotemporal clustering coupled with Gaus-

sian processes (GPs) to make efficient predictions of traffic speed. Specifically,
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Figure 1.4: Overview of the methods used in each chapter. The methods are grouped
by three identified themes: spatiotemporal clustering, environmental modeling and ma-
chine learning models. Arrow heads indicate the sequential flow of the problem solving
process. Lines indicate “use” relationships. Each chapter is denoted by a corresponding
circled number. The chapters are further grouped by their spatiotemporal data type.

matrix factorization is used to cluster and localize subsets of training data to effi-

ciently learn “local” GPs and make real-time predictions. I also propose GP kernel

functions that incorporates “side information” reflecting the features of the road

networks for more accurate modeling and predictions. Contents in chapter are

adopted from the following publication:

– Truc Viet Le, Richard J. Oentaryo, Siyuan Liu & Hoong Chuin Lau (2017).

Local Gaussian Processes for Efficient Fine-grained Traffic Speed Prediction.

IEEE Transactions on Big Data (TBD), 3 (2), 194–207.

• Benefiting from the GP model and kernel function developed in the previous chap-

ter, Chapter 7 attempts to predict the spatiotemporal distribution of crime inci-

dents in urban areas. Such capabilities prove crucial to the design and implemen-

tation of a data-driven resource allocation model for law enforcement agencies.

Parts of this chapter result in the following publication:
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Fig. 1.4 summarizes the methods and techniques used in each chapter. It also illustrates

the common themes among those methods. These themes abstract away the peculiarities

of each method and its problem and give rise to the integrated framework. The figure

also illustrates the flow of the problem solving process as the themes emerge, which

should become clearer in Chapter 3.

The rest of the thesis is organized as follows. Chapter 2 reviews to literature related to

the concepts, methods and problems used throughout this thesis. Chapter 3 introduces

the integrated framework, the datasets and how the framework can be applied to each of

the problems. Chapter 4 describes the bundle prediction problem. Chapter 5 elaborates

on the trajectory prediction problem. Chapter 6 discusses on the third application: real-

time traffic speed prediction. Chapter 7 illustrates the final application of the framework:

predicting the spatiotemporal distribution of crime incidents in an urban area. Finally,

Chapter 8 concludes the thesis with insights drawn and future directions.



Chapter 2

Literature Review

2.1 Overview

The high-level contribution of this thesis is in the area of urban computing. Urban

computing is defined as the “process of acquisition, integration and analysis of big and

heterogeneous data generated by diverse sources in urban spaces to tackle the major

issues that cities face” [112]. In other words, the goal of urban computing is to help us

understand the nature of urban phenomena and predict the future of cities [38, 112, 113].

An example of which is how autonomous vehicles would transform the future of urban

mobility. This is briefly discussed in the future work in Chapter 8.

Following the general framework for urban computing research established by Zheng et

al. [112], which is reproduced in Fig. 2.1 for clarity, my contribution in this thesis can

be summarized as follows:

• In the urban sensing step, real-world spatiotemporal data are first obtained from

private data partners (Sect. 3.2 describes this in detail).

• In the data management step, the provided data are fused with other sources

of data (e.g., GIS shapefiles) to derive useful features for the problems.

• In the data analytics step, machine learning models are proposed coupled with

clustering techniques to effectively and efficiently solve the problems, which are

then formulated into a framework of its own. This can be seen as a more concrete

12
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Figure 2.1: The general framework for urban computing research. Adopted from
Zheng et al. [112].

contribution of the thesis to the urban computing literature as it extends the

abstract component of “Urban Data Analytics” of the general framework into a

generalizable and actionable problem-solving process using machine learning.

Finally, in the service providing step, the predicted values (in the data analytics step)

are to be used for particular urban problems. This is not discussed in the thesis due to

its limited scope. Appendix A illustrates such a typical application in law enforcement.

Thus, my urban data source is a cross-domain fusion of public sources (e.g., GIS shape-

files for road networks and boundaries of urban areas) and privately sourced data (e.g.,

trajectories, sensor readings). This can be considered as feature-level-based direct con-

catenation data fusion method according to Zheng [111] because it concatenates the se-

lected features from different data sources and domain knowledge into a single dataset,

from where the features are further scaled and regularized for model fitting.

In each of the following sections, I review the related work and literature to the thesis

along the three axes: data, problem and method. I first briefly describe the concepts and
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problems, and then review what has been done and highlight the differences between

the contribution in this thesis and the previous work.

2.2 Spatiotemporal Data

2.2.1 Trajectory Data

A trajectory is an ordered sequence of spatiotemporal data produced by a moving object

that has both a spatial and a temporal component vector [50]. The spatial vector

contains the information of the locations where certain events of interest occur. The

temporal vector contains the corresponding timestamps of such occurrences. In this

thesis, the two component vectors are necessarily of the same length. I call the length

of a trajectory its sequence length. Given a set of trajectories, one of the fundamental

tasks is to identify clusters of similar trajectories [46, 50, 60, 63]. As it shall become

clear, trajectory clustering plays a crucial role in identifying distinct mobility patterns,

which in turns significantly reduces the complexity of the modeling problem.

Typical examples of trajectory data includes GPS trajectories produced by moving ve-

hicles [16, 18, 62, 109] and sequences of human activities in a city throughout a day [46].

In this thesis, the trajectory data explored are more similar to the latter, i.e., sequences

of attraction visits in a theme park by visitors during a defined time period.

2.2.2 Traffic Speed Data

Traffic speed data can be calibrated from a wide variety of sources: traffic cameras,

GPS trajectories, speed sensors, etc. [61, 66, 72, 89, 104]. In this thesis, traffic speeds

are obtained from the readings of fixed-location speed sensors placed along road seg-

ments. Thus, my data source is more closely related to the area of congestion and speed

estimation. Congestion and speed estimation have been studied using various math-

ematical tools, ranging from flow patterns [61] to Markov chain forecasting [91], path

oracles for spatial networks [88], and shortest path and distance queries on road networks

[44, 100, 115]. Among those, there are generally two main categories of traffic data: (1)

dynamic traffic measurements obtained from GPS trajectories or low-bandwidth cellular

updates associated with individual “floating” vehicles [16, 44, 81, 100], and (2) static
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traffic sensor readings associated with fixed locations (e.g., traffic cameras or speed sen-

sor networks) [6, 14, 48]. In this respect, my data belongs to the second category.

2.2.3 Incident Data

An incident is a spatiotemporal data point in which a geo-referenced location and times-

tamp of a certain event of interest is recorded. Incident data thus belongs to the class of

spatiotemporal events [50]. Both the spatial and temporal information associated with

the event are static, since no movement or any other kind of evolution is recorded. Ex-

amples include earth tremors captured by sensors or geo-referenced records of a disease

epidemic [50, 93]. Incident data and spatiotemporal clustering have a long history of

applications in areas such as epidemiology and criminology, from the classic identifica-

tion of the sources of the cholera outbreak in 1854 by John Snow [93], to the invention

of spatial scan statistics [52] and the clustering of crime hotspots in urban areas [69].

In this thesis, incidents are crime reports obtained from emergency calls or organic

police responses. Therefore, besides the spatiotemporal information, an incident here

also records the textual description of the event and the police response to it.

2.3 Spatiotemporal Problems

2.3.1 Spatial Bundle Prediction

An optimal bundle problem is an instance of the classic 0/1 knapsack problem. In

the knapsack problem, we are given n distinct and indivisible items and a knapsack of

capacity W > 0. Each item i has a value vi > 0 and carries a weight wi > 0. Our task

is to select the items to put into the knapsack such that the sum of the values of the

selected items is maximized and the knapsack’s capacity is not exceeded. Let xi ∈ {0, 1}
be a binary decision variable, the problem can be written as:

max
n∑

i=1

xivi

s.t.

n∑

i=1

xiwi ≤W.
(2.1)
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In the spatial bundle prediction problem proposed in Chapter 4, the items are the POIs

(i.e., locations) and the capacity constraint is the time budget Bi of an agent i. Each

location j has a positive utility vj to i, and i’s task is to select a subset of locations

to visit within its time budget Bi in order to maximize its sum of utilities. In the

spatial setting, this problem is further complicated by the fact that the cost pj of each

location is dynamic, i.e., it changes depending on i’s current location as pj approximates

the travel distance (hence, time cost). Chapter 4 proposes effective heuristics based on

spatiotemporal clustering and hidden Markov models to solve this problem.

The spatial bundle prediction problem itself is novel to the best of my knowledge [57].

Besides that, another contribution of this thesis is the derivation of pairwise preferences

between all pairs of locations for each agent. This in turn derives the location’s utility to

the agent. This is achieved via revealed preference learning [87, 106] from trajectories.

2.3.2 Trajectory Prediction

The problem of predicting the trajectory of a mobile agent is not entirely new. Krumm

and Horvitz [51] initially propose a naive Bayes model called Predestination to predict

the final destination of a driving trip given its partially observed GPS trajectory. In

most recent the work, some form of Markov model is proposed to learn the trajectories

and make inferences of future locations. Mathew et al. [70] use hidden Markov models

(HMMs) to identify clusters of locations from raw GPS data, where each cluster is a

POI and corresponds to a hidden state of the HMM. They make inferences of the next

locations using the forward algorithm of HMMs. Trajectories are in turn clustered into

groups of similar patterns to reduce variance and improve predictions. Gambs et al. [35]

propose a mobility model call MMC (Mobility Markov Chain) to incorporate knowledge

of the previous n visited locations and develop an inference algorithm based on n-th

order Markov chains. Gao et al. [36] takes a Bayesian approach to the problem, but

still within the Markovian framework. Sadilek and Krumm [86] predict an individual’s

location far into the future (in terms of months, years) using Fourier and principal

component analysis (PCA), which is similar to that of Jiang et al. [46].

A common thread along these work is some variant of Markov models and some kind of

spatiotemporal clustering (e.g., K-means, PCA, HMMs) to extract mobility patterns. I
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adopt both themes in this thesis coupled with optimal decision models (e.g., knapsack

and Markov decision process) for both spatial bundle and trajectory prediction.

2.3.3 Traffic Speed Prediction

The spatiotemporal correlation structure of traffic data can be exploited to predict the

speed over unobserved road segments at any time using the observed data at the sensors’

locations. Existing Bayesian filtering frameworks [19, 99] that utilize various handcrafted

parametric models to predict traffic flows along highway stretches can only correlate with

adjacent highway segments. Thus, their predictive performances could be compromised

when the actual spatial correlation spans multiple segments. Moreover, their strong

Markov assumption makes these models hard to generalize to arbitrary road network

topology. Existing multivariate parametric models [49, 72] do not quantify uncertainty

estimates of the predictions and impose rigid and unrealistic spatial locality assumptions.

In this thesis, I model traffic speed as a spatiotemporal Gaussian process (GP) that

characterizes the spatiotemporal correlation structure of the phenomenon over a defined

road network. Neumann et al. [74] maintained a mixture of two independent GPs

for traffic speed prediction, such that the correlation structure of one GP utilizes road

segment features and that of the other GP depends on manually specified relations.

Xie et al. [104] used GPs to predict the time series of traffic volume over highways,

and asserted GPs’ superior performance over other parametric alternatives. Liu et al.

[65] used GPs to model uncertain congestion environments for adaptive vehicle routing.

More recently, Chen et al. [20] applied GPs for urban mobility demand sensing in a

decentralized and distributed fashion. These approaches (except for [20]) do not scale

well with big traffic data for real-time applications because of GP’s O(n3) computational

complexity (in training set size). In contrast to the distributed GPs [20], the approach

in this thesis is much simpler as it does not rely on complex decentralized mechanism.

2.3.4 Crime Incident Prediction

In this problem, given a location and a future time label (e.g., period, interval), I would

like to know how many incidents of crime would occur there and then for each type1

1Typically, each type is modeled separately.
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of incident. I would also like to know the distribution (i.e., mean and variance) of such

prediction. This is a well-known problem in predictive criminology [80], where police

officers proactively patrol crime “hotspots” in anticipation of incidents [69]. Refer to

[80] for a comprehensive survey on predictive policing, including incident prediction.

In short, such predictions are highly sensitive to how the spatial and temporal labels

are defined, i.e., how fine-grained is the urban area that I wish to predict. This depends

on several factors, most of which are problem-specific, e.g., the boundaries of the areas

of interest. Hence, they are left as input parameters in this thesis (Chapter 7). Earlier

approaches to the problem are mostly game theoretic [108], particularly involving Stack-

elberg game, that model the interactions between the adversaries (i.e., criminals) and

police officers. The game-theoretic approaches, however, mostly concern with generating

patrol strategies while assuming a given, often simplistic, underlying generative model

for the incidents. Examples include Zhang et al. [107] and Mukhopadhyay et al. [73],

which model the interactions between criminals and officers using a dynamic Bayesian

network (DBN) and use survival analysis to generate the incidents (more precisely the

times to incidents), respectively. The latter represents the distribution of times to event

as a function of arbitrary spatial and temporal features.

Machine learning methods have recently been applied to solve the problem. Most of these

typically include some form of spatiotemporal clustering (e.g., spatial scan statistics)

[69] and kernel methods (e.g., SVM) [80]. Recently, spatiotemporal Gaussian processes

(GPs) with spectral mixture kernels have been applied to solve the problem that can

make predictions “far into the future that goes well beyond what is currently believed

to be possible” [30]. In this thesis, I also take the GP approach, but with a different

(simpler) kernel function as there is no need to predict so “far into the future”.

2.4 Machine Learning Methods

2.4.1 Spatiotemporal Clustering

Spatiotemporal clustering is the process of grouping objects based on both their spatial

and temporal similarity. The technique has gain substantial popularity in recent years

due to the emergence of various kinds of IoT technologies that record location, time
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and environmental properties of various objects in real-time [50]. Indeed, through the

availability of reliable and affordable sensors, we have witnessed an exponential growth

in the amount of fine-grained geo-tagged data at small sampling intervals. Therefore,

the challenge here is as big as the opportunity itself. It is the scalable clustering of big

and fine-grained spatiotemporal data for effective knowledge discovery.

Various clustering techniques have been used to analyze a variety of traffic and human

mobility phenomena. For example, Weijermars [101] applied a hierarchical clustering

algorithm to identify typical urban traffic patterns that serve as basis for traffic fore-

casting. Jiang et al. [46] proposed a framework to cluster the human activity patterns

in urban areas by combining principal component analysis and K-means clustering.

In this thesis, I adopt the method by Jiang et al. [46] with modifications for trajectory

clustering (see Section 4.4) in Chapters 4–5. In Chapter 6, I employ non-negative matrix

factorization (NMF) [23, 59], which assumes soft memberships to clusters, to cluster

traffic phenomenon in urban environments. Indeed, Ding et al. [25] have shown that,

by imposing certain constraints, NMF translates to “soft” K-means or spectral graph

cuts. I also put NMF into a novel application to localize training data for local GPs,

making the approach scalable to big spatiotemporal data. My approach thus offers a

simpler and more generic alternative to the sparsification of GP kernels [15, 92], which

tries to make the GP covariance matrices sparse in order to reduce complexities.

2.4.2 The Kernel Trick

A kernel function k(x,y) : Rn × Rn 7→ R is a mathematical function that encapsulates

the similarity between two vectors x ∈ Rn and y ∈ Rn in an n-dimensional feature

space. Let φ be a feature map that transforms x and y into a higher dimensional feature

space: φ : Rn 7→ Rm, where m > n. The kernel trick avoids the explicit mapping φ that

is needed to learn a linear decision boundary in Rm in order to separate (or classify) x

and y in Rn, assuming they are not linearly separable in Rn. This is possible because

kernel k effectively computes the dot products in Rm while remaining in Rn:

k(x,y) = 〈φ(x), φ(y)〉m, (2.2)
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where 〈·, ·〉m is an inner product in Rm. This result directly follows from the Mercer’s

theorem [83], which is not presented here due to its mathematical complexity.

In other words, we can compute the dot products between x and y in Rm using a function

k that works exclusively in Rn. This is a significant result, because, otherwise, φ would

incur prohibitive computational cost of increasing the dimensionality from Rn to Rm,

if m grows very quickly with respect to n. Hence, the only effect on computational

complexity is computing k(x,y). Depending on k, this can be minimal. Sect. 6.5.1

illustrates typical kernel functions used to model spacetime processes.

A particularly important implication of the kernel trick in this thesis is that while the

i.i.d. assumption doesn’t normally hold for spatiotemporal data, which invalidates the

use of dot products in its original space Rn. In a higher dimensional space Rm, we can

still safely use the dot product to compute the similarity between two data points in

space and time without worrying about the i.i.d. assumption in Rn.

2.4.3 Revealed Preference Learning

The seminal work of Paul Samuelson [87] has generated a voluminous body of work in the

economics literature on revealed preference (RP) theory. See [97] for a comprehensive

survey. A classic result is Afriat’s theorem [3], which formulates a system of inequalities

that has positive solution iff the demand data is rationalizable. A recent line of work

emerging from the intersection of algorithmic game theory and machine learning has

established some theoretical groundwork for the problem of learning utility functions

from RP data [9, 54, 106]. Beigman and Vohra [9] use statistical learning analysis to

address the problem of learning utility functions with the explicit goal of prediction.

They show that the sample complexity (in the probably approximately correct sense) of

learning a utility function from RP data is infinite, assuming monotonicity and concavity

of utility functions. Lahaie [54] applies kernel methods to rationalize RP data assum-

ing non-linear prices and incomplete price information, where prices of non-demanded

bundles are unknown. The method reduces the problem to fitting utility function to

observations in the transformed high-dimensional space using the “kernel trick”.

Notably, Zadimoghaddam and Roth [106] recently propose a simple and efficient algo-

rithm to learn utility functions from RP data for the class of linear and linearly separable
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concave utility functions in polynomial sample complexity. Because of its simplicity and

efficiency, I adopt one of the learning algorithms in Zadimoghaddam and Roth [106] in

Chapter 4 for the bundle prediction problem (refer to Fig 4.2). My contribution here

can be viewed as a extension of Zadimoghaddam and Roth [106] to the spatial setting.

It is, however, not straightforward how the original algorithm can be adapted to solve

the proposed problem, especially where costs are unobserved.

2.4.4 Reinforcement Learning

Modeling human sequential actions has been traditionally studied in the domain of

human-computer interaction. For instance, mining sequential behaviors has been used

to discover mobile users that share similar habits [68], or to imitate human behaviors in

order to provide better automated care to the disabled and elderly [40]. In this respect,

modeling sequential decisions as Markov processes is commonly used to simplify the

representation of the user’s knowledge [116]. A common shortcoming here is the lack of

modeling of the users’ decision processes in order to explain the discovered patterns.

Reinforcement learning (RL) is a powerful AI framework inspired by behaviorist psychol-

ogy, which asserts that behaviors are learned from interacting with the environment in a

trial-and-error fashion [96]. An agent learns optimal policies by observing the outcomes

of its interactions with the environment and attaching rewards or punishments to differ-

ent outcomes. Therefore, understanding human behaviors requires finding the reward

function that motivates the observed actions. Inverse reinforcement learning (IRL), first

proposed by Russell [85], provides an elegant framework to identify the reward function

being optimized by the agents given their observed activities. Ng and Russell [75] pro-

pose the original algorithms to tackle the problem based on linear programming. Ever

since, there has been a wealth of algorithms developed to solve IRL [114].

IRL has enjoyed diverse applications in automated control systems that try to imitate the

behaviors of expert users (a.k.a. “learning from demonstrations”) such as learning how

to drive a car [2], controlling helicopters [1], and predicting mouse movements [116].

In this respect, my framework (proposed in Chapter 5) integrates IRL to model the

stochasticity (i.e., distribution) of rewards in trajectory prediction. Based on Markov

decision process (MDP), a specialized model of RL in which the environment is known,

I propose sequential decision models to solve the problem with budget constraint.
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2.4.5 Gaussian Process

Gaussian processes (GPs) have been consistently shown to be an effective tool for mod-

eling various spatiotemporal phenomena in urban environments such as traffic flow

[20, 44, 104] and event prediction [30]. As a result, they are also employed in this

thesis for the corresponding problems: traffic speed prediction (Chapter 6) and incident

prediction (Chapter 7). Because of their fully non-parametric Bayesian formulation,

GPs advantageously allow for the explicit probabilistic interpretation of the model out-

puts and confidence interval estimations [20, 92, 104]. However, GPs also admit cubic

time complexity in the size of the training set, which make them inefficient to model big

spatiotemporal data [20, 65, 67]. This thesis attempts to overcome that challenge.

In Chapter 6, I propose a local GP approach to gain efficiency in model training. The

idea of localizing the training data by clustering was first proposed by Snelson and

Ghahramani [92], who developed a localization approach by dividing the training data

into (disjoint) blocks via a simple farthest-point clustering. Nguyen et al. [76] proposed

a local GP for online regression, where the training data are incrementally partitioned

into local regions. For each local region, an individual local GP is trained, and prediction

is performed by weighting the nearby local models. In Chapter 6, the localization is done

on the response space (i.e., speed) instead of the feature space. Doing so enables us to

train more accurate local GPs, each specializing in a specific traffic response regime.



Chapter 3

The Integrated Framework

3.1 Introduction

In this thesis, I propose multiple solutions to solve a diverse set of spatiotemporal prob-

lems in urban environments. However distinct and peculiar these problems are, their

tailored solutions can be synthesized into common themes (as depicted in Fig. 1.4) and

integrated into a general framework shown in Fig. 3.1. In this framework, the peculiar

features of the individual problems have been abstracted and reduced into a generic

process of problem solving that is highly extensible.

As shown in Fig. 3.1, we are given a dataset D that can be split into a training set

S and a test set T that correspond to two phases of the framework: training (a.k.a.

“learning”) and test (a.k.a. “prediction”). S is used to train a machine learning model

M for the phenomenon under study. T is used to evaluate M with unseen instances of

the phenomenon. In the training phase, the following steps are performed:

Step 1 [Spatiotemporal Clustering] If necessary1, S is split into K homogeneous subsets

(or clusters) using its feature vector f , then j denotes the index of each cluster.

Step 2 [Environment Modeling] For each j, the underlying environment Hj of the phe-

nomenon is modeled using a mathematical model or data structure.

1This step is optional. As it turns out in Chapter 7, it is not necessarily performed.

23
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Figure 3.1: The integrated framework for modeling and prediction of spatiotemporal
phenomena in urban environments. Dashed lines illustrate specific instantiations in this

thesis. Asterisk (∗) indicates an optional step. Circled numbers indicate steps.

Step 3 Finally, a machine learning model Mj is learned from the modeled examples

in each subset j. Instances of M are: revealed preference learning (Chapter 4),

reinforcement learning (Chapter 5), or Gaussian processes (Chapters 6–7).

After training, the test phase consists of the following steps:

Step 1 [Classification2] Given a test instance i ∈ T and its features fi, i is mapped into

one of the K clusters learned from S. Let k denote the mapped cluster index.

Step 2 [Environment Mapping] The observed environment of i is mapped into a set of

environmental variables Hk that have been modeled in Environment Modeling.

Step 3 The corresponding set of parameters Θk of machine learning model Mk are

then retrieved to generate an output response to “solve” the instance i.

Step 4 [SOLVE] Instance i is solved (i.e., predicted) either by using Mk directly (e.g.,

GP regression as in Chapters 6–7) or by a combination of Mk and optimization

models such as knapsack (Chapter 4) or a sequential decision models (Chapter 5).

Finally, an appropriate performance measure P is proposed to evaluateM that quantifies

the difference between each predicted value of instance i and its true (test) value, ∀i.
Let xi denote i’s true value and x̂i its predicted. Let ∆P (xi, x̂i) denote the difference

between xi and x̂i under P . We say that M is a “good enough”3 model under P if for

all i, there exist arbitrarily small numbers ε, δ > 0 such that:

Pr(∆P (xi, x̂i) ≤ ε) ≥ 1− δ. (3.1)

2This step is only performed if Spatiotemporal Clustering is performed in Training.
3Meaning Prxi∼D(xi 6=P x̂i) ≤ ε [71].
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Table 3.1: Summary of common notations used in this thesis.

Notation Description
D,S, T Total dataset, training set and test set, respectively
i Instance of the prediction problem
j Spatiotemporal cluster index
K Total number of clusters
k The mapped cluster index (in Prediction)
fi Feature vector of each instance i
H Set of parameters that model the underlying environment
M,Θ Machine learning model and its set of parameters, respectively

Table 3.1 summarizes the common notations used in this thesis.

3.2 Datasets

I now describe the sources and background information of the real-world datasets used in

this thesis, where the integrated framework is applied to solve their respective problems.

3.2.1 Human Mobility

In this problem, I make use of the proprietary dataset provided by the Sentosa Devel-

opment Corp. (called “Sentosa” for short) on two of their attraction bundling schemes:

Sentosa Choice Pass (called “Choice Pass” for short) and Sentosa Day Play Pass (called

“Day Pass” for short). Sentosa itself develops and maintains a large theme park in the

resort island of Sentosa, Singapore. Fig. 3.2 illustrates all of the attractions in Sentosa

participating in these two bundling schemes. The attractions are clustered based on

their features and spatial locations as designated by the theme park.

Under Choice Pass, each visitor can select any 4 attractions out of a defined set of

16 participating attractions and pay upfront a fixed bundle price (independent of their

choice) before visiting. Visitors can then redeem their chosen attractions on a chosen

day and during a specified period from 9 a.m. to 7 p.m. Each chosen attraction can

only be visited once. Section 4.7.1 describes in detail the Choice Pass dataset.

Under Day Pass, each visitor pays upfront a fixed bundle price in order to redeem

up to 14 participating attractions in Sentosa. (This set of attractions is specified by

the theme park.) Visitors can then redeem the attractions during the specified 10-hour

period from 9 a.m. to 7 p.m. on their chosen day. Each attraction can only be visited
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Figure 3.2: Attractions in Sentosa participating in the Choice Pass and Day Pass
bundling schemes. Clusters are designated based on their functionality and locations.

Figure 3.3: Summary of attraction bundling schemes by Sentosa studied in this thesis.

Figure 3.4: Popular pairwise transitions between Sentosa attractions. Popularity of
each attraction is proportional to its node size. Colors illustrate attraction clusters
arising from strongly associated pairwise transitions based on the provided trajectories.

once. Section 5.6.1 describes in detail the Day Pass dataset. Note that this bundle price

is necessarily different from (i.e., more expensive than) that of the Choice Pass.

Figure 3.3 summarizes the two attraction bundling schemes studied in this thesis. For

each dataset, the provided data is a set of visitor trajectories. Each trajectory is

an ordered sequence of attraction visits (i.e., locations) and corresponding timestamps.

Thus, each trajectory is a spatiotemporal sequence of visits. We are also provided with
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other features such as sales (e.g., purchase method, point of sale, etc.) and demographic

information of the visitors (adult/child ticket type, group information, etc.) that can be

matched with the visitors’ trajectories to form rich consumer behavioral datasets. The

time period of both datasets is from January to April, 2014.

Given these datasets, our research questions are:

1. Can we model and predict a visitor’s choice of attraction bundle (i.e., an unordered

set) given their features and “known intention” (to be defined in Chapter 4)?

2. Can we model and predict a visitor’s trajectory (i.e., an ordered sequence) given

their partially observed trajectory and features?

Chapters 3 and 4 answer these two questions, respectively. A native method to both

questions would be to “mine” the association rules from these trajectories and learn a

generative model from those rules to make predictions. Fig. 3.4 illustrates such “strong”

pairwise associations (i.e., ≥ 0.50) learned from the trajectories of the Day Pass dataset.

We will see later that such a naive approach would fall short of our goals.

3.2.2 Traffic Speed

Our second data partner is Nokia HERE4 (or “Here” for short). Here provides us fine-

grained traffic speed measures along road segments in the two U.S. cities of Pittsburgh,

Pennsylvania (P.A.) and Washington, D.C. recorded for several months in 2014. These

speed measures are synthesized from a more complex data collection mechanism called

TMC (Traffic Message Channel) that combines both privately crowd-sourced and pub-

lic sources of traffic information. Such fine-grained traffic speed measures along road

segments approximate a network of speed sensors for each city. Hence, these speed

values themselves form a complex spatiotemporal phenomenon over the urban road net-

work. Section 6.6.1 describes this in detail. Fig. 3.5 visualizes the daily average speed

distribution along the road network of Pittsburgh for the whole month of August, 2014.

Fig. 3.5 shows certain dark patches in the city’s road network, where, due to the lack

of “sensors”, no speed values were recorded during that time. For certain realistic

4Nokia sold Here to a consortium of German automotive companies (Audi, BMW and Daimler) in
December, 2015.
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Figure 3.5: Visualization of the daily average traffic speed values along road segments
in Pittsburgh, P.A. in August, 2014. Brighter colors illustrate higher speeds. Dark areas

are either outside the city’s boundaries or where no speed values were recorded.

applications, e.g., vehicle routing, it might be useful to know the speed distributions

over those unobserved segments. Or given the daily average speed distribution for the

month of August, we would like to know what the daily average speed distribution would

be like in September. In other words, we ask the following questions:

1. At any moment, given the observed speeds over certain segments, what is the

traffic speed distribution over other unobserved segments? I call this the spatial

inference task.

2. At any location, given the observed speed over a particular segment (and others),

what will be the traffic speed distribution here in a future time period? I call this

the temporal prediction task.

I call both tasks the spatiotemporal inference of traffic speed. Chapter 5 provides

an efficient solution framework to these questions based on Gaussian processes.
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3.2.3 Crime Incidents

Our third dataset is crime incidents obtained from a national law enforcement agency

in a large Asian city. The dataset spans over one year period in 2013–2014 and contains

more than 200,000 reported incidents in total. Each incident is either recorded from an

emergency call or from a police officer on patrol responding to it. For each incident,

the data records the detailed information of the location (latitude, longitude and postal

code), timestamp (date and time), type (e.g., traffic accident, quarrel, murder, etc.) and

priority (i.e., urgency classification) as well as police dispatch and response information

such as travel time and engagement time. In other words, the data tells us where, when,

and what happened and how they were responded. Due to the highly confidential nature

of the data, it cannot be described in detail in this thesis.

There are nine local centers of the agency (called “neighborhoods”), each contains 2–3

sectors as the base locations for the officers. Thus, a sector is part of a neighborhood,

and each has a defined boundary. We are additionally provided with the neighborhood

and sector boundaries via GIS shapefiles. Given this, our research tasks are:

1. To predict the distribution of the number of incidents in each sector and neigh-

borhood in the future time periods.

2. To generate the distribution of the number of incidents if the given (sector/neigh-

borhood) boundaries are changed.

As it will be clear in Chapter 7, such capabilities play an essential role in the design and

implementation of an optimal resource allocation for the law enforcement agency. They

are particularly useful for testing the robustness of the model in which the response time

(to the incidents) plays the role of a key performance indicator.

3.3 Applications

In this section, I give a high-level description of how the framework depicted in Fig. 3.1

can be applied to solve each of the real-world problems studied in this thesis.
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3.3.1 Bundle Prediction

In this problem, we are given some prior information about the agent’s “initial intention”

(e.g., first check-in time in the them park), we wish to predict the bundle of attractions

(i.e., an unordered set of attractions) that the agent is going to visit during the day.

Chapter 4 describes in detail the problem and its solution framework.

Learning. The following steps are performed:

1. Use trajectory clustering to divide the training set S into K distinct clusters, each

represents an “agent type”.

2. For each cluster, a hidden Markov model (HMM) is used to model the environment

under which the agents make decisions (i.e., evaluate the time cost for each visit).

3. From the observed decisions made, a revealed preference model is learned for each

agent type that reveals the agent’s preference for every pair of attractions. These

preferences are then stored in the “value ratio matrices” R.

Prediction. Given a test agent i’s initial intention and its feature vector fi, the following

steps are performed:

1. Classify i into one of the K agent types using a logistic regression.

2. Map i into a particular environment HMMk under which it makes decisions.

3. Heuristically derive the time costs to the (unvisited) attractions in i’s consideration

set and retrieve the pairwise preferences for the attractions (via matrix Rk).

4. Given i’s time budget Bi, its retrieved preferences and the cost of each attraction,

the agent chooses the most optimal bundle by solving a knapsack problem.

3.3.2 Trajectory Prediction

In this problem, we are given the observed partial trajectory of an agent (e.g., the first

sequence of n attraction visits), we wish to predict its remaining trajectory. Chapter 5

describes in detail the problem and its solution framework.

Learning. The following steps are performed:
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1. Use trajectory clustering to divide the training set S into K distinct clusters, each

represents an “agent type”.

2. For each agent type, train a separate HMM to model the underlying environment

they interact with. Each hidden state of the HMM is essentially a spatiotemporal

cluster that models the agent’s “state of mind” when it makes a decision.

3. Use Markov decision processes (MDPs) to model the sequential decisions of the

agents. Under the MDP framework and given the observed sequential decisions,

use inverse reinforcement learning (IRL) to learn the reward distribution of each

state and each attraction visit for each agent type. Those parameters are stored

in K separate reinforcement learning (RL) models.

Prediction. Given a test agent i’s observed partial trajectory and its feature vector fi,

the following steps are performed:

1. Classify i into one of the K agent types using a logistic regression.

2. Use the Viterbi algorithm to infer the (partial) sequence of hidden states of the

HMMk from i’s observed partial trajectory.

3. Derive i’s “expected reward level” (using the Bellman equation) that it is trying

to achieve with the remaining attractions.

4. Two decision models are proposed to predict i’s remaining trajectory: one based

on (optimal) MDP and the other based on a suboptimal greedy heuristic. Both

take into account the i’s budget constraint and the uncertainties of the rewards.

3.3.3 Traffic Speed Prediction

In this problem, we are given a traffic speed query 〈s, t〉, and we wish to predict the

traffic speed f(r, t) along the road segment r at a future time t in a real-time fashion.

Chapter 6 describes in detail the problem and its solution framework.

Learning. The following steps are performed:

1. Cluster the observed speeds along road segments and time periods into K2 spa-

tiotemporal clusters using matrix factorization (where K is an input parameter).
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2. For each cluster j, derive its cluster “centroid” heuristically using the spatiotem-

poral features fj . The underlying environment here is the road network, which can

be modeled using a directed graph G and a kernel function k(·) over G.

3. Each cluster then serves as a “local” subset of training data for each local Gaussian

process (GP) to be learned in real-time to make predictions.

Prediction. For each test query 〈s, t〉, the following steps are performed:

1. Use a simple heuristic to map the query to the closest cluster centroid.

2. A local subset of training data is then retrieved together with the spatial features

of the clustered segments (called “side information”) .

3. A local GP is trained in real-time (using the local training set) incorporating the

side information via k(·) to make a prediction (i.e., performing a GP regression).

3.3.4 Incident Prediction

In this problem, we are given an arbitrary spatiotemporal query (x, y, t), where (x, y)

represent the longitude and latitude coordinates, and t the time. We wish to predict the

expected number of incidents that would occur at location (x, y) and time t. Chapter 7

describes in detail the problem and its solution framework. Note that in this application,

Spatiotemporal Clustering and Classification steps are not necessary.

Learning. The following steps are performed:

1. Divide the continuous spatial and temporal dimension into K equal “bins” using

spatial gridding and temporal intervals (whose parameters are given as inputs).

2. Bin the incidents into K bins and count the number of incidents within each bin.

Each bin j has its centroid coordinates (xj , yj) and time interval tj .

3. Using (xj , yj , tj) as the spatiotemporal features of the bin, coupled with its derived

side information fj , train a global GP to model the count variables over the bins.

Prediction. The following steps are performed:
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1. Map the query (x, y, t) into a bin i.

2. Derive its spatiotemporal features (xi, yi, ti) and side information fi.

3. Perform a GP regression to compute the distribution (mean and variance) of the

number of incidents in i.



Chapter 4

Predicting Spatial Bundles from

Revealed Preference Data

4.1 Introduction

I begin by first considering the problem of predicting a bundle of goods, where the

goods are spatial locations that an agent wish to visit (a.k.a. “spatial bundle”), given

knowledge of the costs of all goods considered and their budget constraint. This scenario

typically arises in the travel industry where attractions in a certain geographical area

can be packaged together by the developer and sold at a (discounted) bundled price. An

example is CityPASS, where the company sells booklets (bundles) of attractions in 11

cities throughout North America. Bundles typically include transport passes and tickets

to places of interest that can be redeemed for a specified duration of visit. Another is

Eurail, a European-based company that markets bundled train passes to a defined set

of European countries that share borders and for a specified period of travel. When

prices of bundles differ depending on the combinations of the included goods and their

quantities, the problem becomes that of classical revealed preference analysis.

Revealed preference (RP) is a consumer behavior theory pioneered by economist Paul

Samuelson [87]. It is built on the premise that intrinsic preferences are unobserved;

however, a consumer’s preferences can be revealed through their observed purchasing

behaviors. That is, it is possible to predict consumer behaviors on the basis of variable

prices and income (budget constraint). A consumer with a given income will buy a

34
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certain mixture of goods; but as their income changes, the mixture of goods will change

accordingly. The theory assumes that a rational consumer has considered a set of all

possible alternatives according to some well-defined utility function before making their

decision. Thus, given a consumer chooses a option out of this set, this option must be

the most preferred (i.e., the utility maximizer) that they can afford. The basic question

of RP analysis is to recover a utility function that best explains (or rationalizes) the

observed consumer behaviors [9, 54, 87, 106].

I consider the scenario where the developer allows buyers to “mix and match” a fixed

quantity Q > 0 of items at preset price p and the chosen bundle can be consumed

during a specified period B. For instance, a theme park developer would sell a bundle

of attractions that visitors can choose from a fixed set (e.g., choosing Q = 4 out of

16 attractions) at price p; and once chosen, the attractions can be visited in any order

during period B. If I consider all those who go for bundles at price p, then RP analysis is

no longer feasible because of price uniformity. In other words, the cost information has

become latent or unobserved. In order to apply RP analysis, I need to find a proxy to

the costs that consumers take into consideration when making decisions. In my setting,

cost information may be approximated by the physical distances of the visited locations

revealed from an agent’s trajectory in the absence of any other sources of information

(e.g., means of transport, queue length at each location). This is because a rational

agent would plan their visit such as to minimize the total distance traveled (or the time

cost) over their chosen locations subject to budget constraint B. Finding such proxies is

thus a challenge in RP analysis for spatial goods in the absence of complete information.

Given its spatial nature, the problem can benefit from the rich literature of the location

prediction problem in spatiotemporal analysis. Motivated from the massive growth of

spatiotemporal data generated by location-aware devices, the problem seeks to predict

the next location(s) that an individual would travel to given their current and past

trajectories. A trajectory is defined as an ordered sequence of timestamped locations.

A common approach is to apply a wide variety of Markov models, most commonly

Markov chains and hidden Markov models (HMMs), to model the sequential movements

and make predictions. A common subtask is to cluster the locations using the hidden

states of an HMM to discretized the space into finite points of interest (POIs) [35, 70].

Another is to cluster the trajectories into groups of similar mobility patterns and model

each separately to reduce variance and improve predictions [46, 70].
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In this chapter, I integrate techniques from spatiotemporal analysis to solve the proposed

problem. In particular, I use trajectory clustering to divide the agents into groups of

similar preferences for variance reduction. I then use HMMs to extract clusters of loca-

tions that are frequently visited together in order to establish the reference points from

where the agents based their decisions on to approximate the costs. Finally, I leverage

on a recent line of work emerging from the intersection of algorithmic game theory and

statistical learning theory [9, 106], that has established the conditions and algorithms

for efficiently learning the utility functions from RP data. I evaluate my proposed solu-

tion using real-world data collected from a theme park, which indeed outperforms the

baselines, one of which was proposed for the next location prediction problem [70].

Applications of such predictions are plentiful and include predicting the aggregate de-

mand in response to changes in costs of the goods (e.g., changing certain locations to

further/nearer distances) or the set of all available goods itself (including/excluding

some locations to/from the consumer’s choice set), resource planning in anticipation of

such changes in demand, and developing location-aware services or marketing.

4.2 Problem Statement

Consider a set D of agents and a finite set G (|G| = d) of POIs of arbitrarily large

capacity1 each. Each agent i ∈ D faces a cost vector pi, where pij is the cost of visiting

location j ∈ G for i. Each i also has a personal value vector vi over each j ∈ G, where vij

is the value of j for i. In other words, vi reflects i’s intrinsic preference over all j ∈ G.

Finally, agent i comes with a budget constraint Bi and i wishes to visit a subset si ⊆ G
such that |si| ≤ Q for some Q > 0 and

∑
j∈si pij ≤ Bi. Without loss of generality,

suppose that i makes a vector of binary decisions xi ∈ {0, 1}d of which location j to

include in the bundle si. The preference of i over all possible bundles is defined by

a non-decreasing, non-negative concave utility function u : {0, 1}d → R+. I assume

throughout that i’s utility function belongs to the class of linear utility functions, i.e.,

u(xi) = xi · vi. Thus, i chooses his most preferred bundle s∗i (or equivalently x∗i ) by

1This is to make a simplified assumption that a visitor does not have to wait to get in an attraction
that is full, which also simplifies the utility function to consider only the distance cost.
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solving the classic 0/1 knapsack problem:

x∗i = arg max
xi
{u(xi)|xi · 1 ≤ Q ∧ xi · pi ≤ Bi}. (4.1)

Following the conventions in machine learning, I derive a training set S = {(pi, Bi, x∗i )}mi=1

drawn i.d.d. from D and a test set T = D − S. Assuming linear utilities of the agents,

I wish to learn the value vectors v̂i from S in order to predict the chosen bundles in T
with good enough accuracies. Let x∗i (pi, Bi, vi) be the chosen bundle and let x̂i(pi, Bi, v̂i)

be the predicted one, my accuracies are good enough if for all i and for some δ > 0:

Pr(x∗i (pi, Bi, vi) 6= x̂i(pi, Bi, v̂i)) ≤ 1− δ. (4.2)

4.3 Solution Overview

Fig. 4.1 illustrates the overall solution framework to the above problem. For learning, I

first split all training agents in S into K clusters using trajectory clustering. For each

cluster Clj (1 ≤ j ≤ K), I train a separate HMMj that best describes the sequential

movements of those in Clj . I then propose a heuristic to approximate the perceived

costs faced by each agent called the “centroid heuristic”. I derive a set of “centroids”

Cj for each Clj using the hidden states of HMMj such that each agent i ∈ Clj can be

mapped to each centroid (a.k.a. “reference point”) rk ∈ Cj depending on their intention

Ii (to be defined). Each rk corresponds to a perceived cost vector pk shared by all the

agents having the same intention. I can then efficiently learn the value ratio matrix Rj

given the chosen bundle x∗i and cost vector pk of all agents i ∈ Clj using an RP learning

algorithm, e.g., the one due to Zadimoghaddam and Roth [106].

To make predictions, for each agent i ∈ T , I first predict which cluster Clk that i most

likely belongs to – call this Clik. In this work, I don’t address the problem of class

prediction due to restricted scope. I suppose it is feasible, and most of the time it is

through some established method such as logistic regression and decision tree. Given i’s

intention Ii, I map Ii to the nearest reference point rij , from where I can derive i’s cost

vectors pij . Let v̂k be any row vector of Rk corresponding to Clk. Given i’s budget Bi

and learned value vector v̂k, I predict i’s chosen bundle when facing pij by solving (4.1).
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Figure 4.1: The learning and predictive framework for spatial bundle prediction.

Table 4.1: Summary of additional notations used in this chapter. Reintroduced
notations override those introduced earlier.

Notation Description
G Set of POIs, where |G| = d
vij , pij Value and cost of location j ∈ G for agent i
si, li Trajectory and trajectory (sequence) length of agent i
Bi Budget of agent i
Q Maximum bundle size (1 ≤ li ≤ Q)
xi The selected bundle of agent i
Rk Value ratio matrix of agent type k (1 ≤ k ≤ K)

Table 4.1 summarizes the additional notations used in this chapter. The following sec-

tions elaborate on the components of the proposed framework in Fig. 4.1.

4.4 Trajectory Clustering

One important challenge is that I cannot simply learn the preferences of each agent

i ∈ S and predict for another j ∈ T because: (1) that is highly inefficient, and (2) it

would most likely overfit the training data and lead to poor predictions. On the other

hand, nor can I expect everyone to behave the same under the same prices and budget

constraint as implied by RP theory because empirical data shows a great diversity of

behaviors. I seek a solution in between where the agents can be divided into groups of

similar behaviors such that I could learn the preferences from and predict the behaviors

of those of the same group. This is the rationale for trajectory clustering.

For each agent i ∈ S, let li be the sequence length of i, I denote the sequence of

locations visited by i as y(i) = {y(i)
t }lit=1 and the sequence of timestamps for each y

(i)
t as

τ (i) = {τ (i)
t }lit=1. I define i’s trajectory as s(i) = {(y(i)

t , τ
(i)
t )}lit=1. Hence, a trajectory is
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a spatiotemporal sequence of spatial locations and their corresponding timestamps. A

spatial location is a place in the physical world that can be located using its coordinates.

A timestamp τt indicates when the agent visited location yt, but does not necessarily

indicate how long they had stayed there (i.e., the duration of visit).

Suppose there exist an upper bound BU and a lower bound BL on the timestamps of all

the trajectories, then the duration between BU and BL can be discretized into a finite

number of T segments T = d(BU −BL)/∆τe, where ∆τ is an arbitrary duration of each

time segment. I can derive a categorical vector ai of finite and uniform length T for each

agent i from their original trajectory s(i). Each element ait ∈ ai (1 ≤ t ≤ T ) indicates

i’s location at time t. If no location is recorded for i at t, then ait = 0 by convention;

otherwise, ait ∈ {1, . . . , |G|}. I finally assume that i spends at least time ∆τ and at most

an integral multiple of ∆τ at any location in its trajectory.

It is feasible to cluster the agents based on their similarity of behaviors by clustering

the trajectories, or equivalently the vectors ai for all i ∈ S. To this end, there exist

a wide variety of methods for sequence clustering. In this work, I make use of the

well-known method of hierarchical clustering because of its simplicity and the ability to

incorporate domain knowledge in selecting the number of clusters K. In particular, I use

the agglomerative approach that clusters the trajectories recursively in the bottom-up

fashion. I use the edit distance2 to quantify the dissimilarity between any two vectors ai

and aj with substitution cost being the physical distance between the pair of locations

that differ in ai and aj and arbitrary insertion/deletion cost (because they are essentially

two vectors of categorical variables of the same length). To select the number of clusters

K, the hierarchy tree is “cut” at some height that would break up S into K clusters,

which can be determined based on my domain knowledge.

There are many other more advanced methods for sequence and spatiotemporal clus-

tering; I am using one of the simplest and most popular here because clustering is not

my final goal, but a means to an end. An example of a more advanced method is due

to Jiang et al. [46], in which trajectories are clustered by combining both PCA and

2Edit distance is a concept in computer science that quantifies how dissimilar two given strings (i.e.,
words) are to one another by counting the number of operations (i.e., edits) required to transform one
string into another. Many algorithms have been proposed to compute the edit distance. In this particular
application, I use the Levenshtein algorithm [12], which is based on dynamic programming and allows
for the deletion, insertion and substitution of characters.
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K-means clustering. Refer to Kisilevich et al. [50] and Fraley and Raftery [33] for

comprehensive surveys on spatiotemporal and model-based clustering, respectively.

4.5 Revealed Preference Learning

In the traditional RP analysis, I am given a sequence of observationsD = {(pi, Bi, x∗i )}Ni=1,

the problem is to recover the utility function that best explains or rationalizes D. Under

the assumption of linear utility, I wish to recover the vector vi for each agent i ∈ D.

Furthermore, not only do I wish to explain the observed data, I also wish to predict fu-

ture chosen bundles of the agents given the recovered utility function. The latter goal is

much broader and harder than the former, because being able to rationalize observations

often does not generally indicate being able to predict unobserved outcomes [106].

Suppose I am able to categorize D into K clusters (K � N). For simplicity, I also call

an agent belonging to cluster k (1 ≤ k ≤ K) an agent of type k. The problem can be

solved by applying the All Pairs Comparison (APC) algorithm due to Zadimoghaddam

and Roth [106], where for each agent type k, there is a value ratio3 matrix Rk learned

from S of dimension d× d. The APC algorithm is a very simple and efficient algorithm

to learn the value ratios vi/vj from RP data for all pairs of goods i, j ∈ G. The main

idea is to bound the pairs vi/vj such that if item i is preferred to item j in some chosen

bundle x∗, then vi/pi ≥ vj/pj , or equivalently vi/vj ≥ pi/pj . Fig. 4.2 describes the APC

algorithm, where δ is an input accuracy paramter.

Unlike an unordered bundle of goods, spatial locations have to be visited in a sequential

order; thus, x∗ has an intrinsic ordering nature. Given locations i, j ∈ x∗, I denote

x∗i > x∗j if i was visited before j by the considered agent, which also implies the agent’s

preference of i over j in x∗. Thus, vi/vj can be upper and lower bounded given the

purchase decisions x(k) and price vectors p(k) of all agents of type k. Given a test agent

of type k, I would choose any row i of Rk to obtain a value ratio vector v̂ = vi/vj for

all 1 ≤ j ≤ d (whose elements are arbitrarily in between the bounds) and predict an

optimal bundle x̂(p,B, v̂) by solving (4.1) using the given price p and budget B.

3The term “value ratio” is used here to mean that each entry (i, j) of the matrix represents the ratio
of the value of goods i over that of goods j from the perspective of agent type k. This, in turn, allows
for the derivation of the preference relation for all pairs of goods.
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Lemma 3.1. For any pair of goods i, j ∈ [n] with x∗
i > x∗

j , it must be that:

v∗
i

pi
≥

v∗
j

pj

Equivalently, for any pair of goods with v∗
i

v∗
j

≥ pi
pj
, the optimal bundle “prefers” good i over good j (It

will never buy any of good j until it has exhausted the supply of good i). Our algorithm is based on this
structural characterization, and operates by maintaining upper and lower bounds on each of the n2 ratios v∗

i
v∗

j

for i ̸= j ∈ [n]. Based on this transitive relation, we can sort the goods, and find the optimal bundle by
buying the goods one by one starting from high priority goods until the budget B is spent completely. In this
optimal bundle, we have at most one fractional item. In our algorithm, we try to learn ratios vi

vj
accurately

for all pair of goods with high probability.

AllPairsLearn(δ):
Training Phase:

1. Let E be a set ofm = O
(

n2 ln(n2/δ)
δ

)
observations (p,B, x∗(p,B, v)).

2. Initialize bounds (Li,j, Ui,j) for each i ̸= j ∈ [n]. Initially Li,j = 0 and Ui,j = ∞ for all i, j.

3. For each (p,B, x∗) ∈ E:

(a) For each i ̸= j ∈ [n]:
i. If x∗

i > x∗
j , Let Li,j = max(Li,j,

pi
pj

)

ii. If x∗
j > x∗

i , Let Ui,j = min(Ui,j ,
pi
pj

)

Classification Phase:

1. On a new example (p,B) let v′ ∈ [0, 1]n be any vector such that for all i ̸= j ∈ [n]
v′

i
v′

j
∈ [Li,j, Ui,j ].

Predict bundle x′(p,B, v′) that results from maximizing v′ with respect to prices p and budget con-
straint B.

Figure 1: The All Pairs Comparison Algorithm for Learning Linear Valuation Functions. It takes as input
an accuracy parameter δ.

The intuition is that in order to find the optimal bundle x∗, we need only know bounds on the ratios of
the values of pairs of goods for which unequal quantities are purchased in the optimal bundle. So if we know
that vi

vj
≥ pi

pj
for any pair of goods with x∗

i > x∗
j , we can find the optimal bundle x∗. We need not know the

values themselves – it is sufficient to bound these ratios. For example, if the lower bound Li,j is at least pi

pj
,

we can infer that good i is preferred to good j. If we can infer all these preferences for pairs of goods (i, j)
with x∗

i ̸= x∗
j , we can find the optimal bundle as well. Following we show that with high probability after

observing m = O(n2 ln(n2/δ)/δ) i.i.d. examples we can find the optimal bundle.

Theorem 3.2. AllPairsLearn(δ) efficiently δ-learns the class of linear valuation functions given m =

O
(

n2 ln(n2/δ)
δ

)
observations.

5

Figure 4.2: The All Pairs Comparison (APC) algorithm adopted from Zadimoghad-
dam and Roth [106]. Notice that n (used originally in the paper) in the figure means d
in this chapter (i.e., the number of distinct POIs) and i, j ∈ [d] are simply the indices.

I use physical distance throughout to approximate the time cost of traveling from one

location to another. Hence, my budget constraint B is defined as the total time cost

required to go through the all the locations in the chosen bundle. Physical distances

are different depending on from where they are measured, i.e., the reference point.

One way to compute the total cost of a trajectory s(i) is to sum all the distances of the

segments in s(i). This method does not scale because there are an exponential number

of ways to choose Q locations from the set G. On the other hand, suppose I know i’s

intention Ii of approximately where i would go, I would be able to map Ii to a particular

reference point rk in space from where I can approximate the total cost as the sum of

distances from rk to all the locations in s(i). An optimal reference point rk for i is one

that minimizes i’s total distance derived from rk assuming i’s goal is to minimize the

total cost. However, this is not feasible in the absence of complete information of s(i).

I define i’s intention Ii as any form of incomplete information about s(i) that I may

have. In the following, section, I propose heuristics to derive rk given Ii.

4.6 Heuristics for Cost Derivation

If I know i’s first visited location, call it y
(i)
1 , then I can take y

(i)
1 as the reference point

for s(i). The rationale is that the first location in a sequence is often the one having the

highest priority (i.e., the most preferred) and a rational agent would plan their itinerary

in such a way to minimize their total time cost as seen from y
(i)
1 . By this, I am making
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other locations that are distant from y
(i)
1 costly and less likely to be included in the

bundle. This heuristic aligns with the assumption that agents try to minimize the total

distance due to budget constraint. I simply call this the first-location heuristic.

Let di be the vector of physical distances from ri, where ri is i’s reference point, to all

the locations in G. I can easily derive pi, the vector of time costs to travel from ri to all

the locations in G from di. For example, if the primary means of travel is on foot, then

di can be converted to pi using the average human walking speed of 5 km/h. Thus, for

each location j ∈ G, pij is the average time cost for i to go from ri to j. Furthermore,

suppose I know the upper bound on the duration of visit at each location j ∈ G, call

this bj , then the proper price vector p̂i seen by i is p̂ij = pij + bj , which reflects the true

time cost at j (i.e., the total time of traveling to j and the duration of visit at j).

Often, we may not know for certain what an agent i may want to include in their

itinerary due to incomplete information. Instead, we may only know i’s intention Ii of

such. In such cases, I would want to divide my physical space (that covers all of G)

into non-overlapping sub-areas and map Ii to one of such sub-areas. For each sub-area,

I would derive a reference point from where I can compute the price vector pi. My

rationale comes from the empirical observations that businesses of similar nature tend

to cluster together geographically in an area in order to compete. Therefore, identifying

such clusters of locations (or sub-areas) is the first step to identifying sensible reference

points to infer costs in the absence of complete information.

To this end, I make use of HMM to derive clusters of locations. Locations within a

cluster should be physically close to one another and tend to be visited together in short

temporal sequence (i.e., without much delay). I use the hidden states of an HMM to

identify those clusters such that each state corresponds to a cluster. I then derive the

reference point of each cluster using its centroid (to be defined later). Given a centroid

rk, I use the nearest-neighbor method to assign locations to clusters: I assign location j

to cluster k such that the physical distance from j to rk is the nearest among all other

centroids. For each agent i, given Ii, I map Ii to the nearest cluster centroid rk and

calculate pi as before. I call this the centroid heuristic. The following subsections

elaborate on the proposed method, beginning with the preliminaries of HMMs.
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4.6.1 Hidden Markov Model (HMM)

An HMM describes the relationship between two stochastic processes: an observed pro-

cess and an unobserved (or hidden) underlying process. The hidden process is assumed

to follow a Markov chain, and the observations are considered conditionally indepen-

dent given the sequence of hidden states. Let {Yt}Tt=1 and {Xt}Tt=1 be the time series

representing the observations and the corresponding hidden states of an HMM respec-

tively. I denote f(yt|Θxt) = Pr(Yt = yt; Θ|Xt = xt) the probability density function of

observation yt parameterized over vector Θ given hidden state xt. An HMM with finite

N hidden states is completely specified by:

1. The finite set of hidden states S = {S1, S2, . . . , SN};

2. The state transition matrix A = {aij}, where aij = Pr(Xt = Sj |Xt−1 = Si), 1 ≤
i, j ≤ N ;

3. The parameter vector Θi of the response (or emission) density function f(yt|Θxt)

for each Si; and

4. The vector of initial (state) probabilities π = {πi}, where πi = Pr(X1 = Si) and
∑N

i=1 πi = 1.

It is common to use the compact notation

Λ = (π,A, {Θi}) (4.3)

to represent the complete parameter set of an HMM. The problem of estimating the

parameters of an HMM given an observed sequence {yt}Tt=1 can be formulated as a

maximum likelihood (ML) problem:

Λ∗ = arg max
Λ

T∏

t=1

Pr(Yt = yt|Λ). (4.4)

The well-known method to estimate Λ∗ is the Baum-Welch algorithm, which is a special

case of the EM algorithm, which in turn makes use of the forward-backward algorithm

[8] to compute the marginal log-likelihood. Refer to [82] for more details on HMMs.
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4.6.2 Centroid Heuristic Using HMM

Because of the spatiotemporal nature of the trajectories, each response variable is a

tuple (yk, τk) with the spatial component yk being the discrete locations drawn from G
as a multinomial distribution4, and the temporal component τk being the continuous

timestamp drawn from a Gaussian distribution N (µk, σk) (1 ≤ k ≤ N). Timestamp can

be modeled as a continuous random variable because I can set a continuous temporal

range from the earliest timestamp BL to the latest one BU for all i ∈ S.

I fit the HMM using the trajectories s(i) for all i ∈ S using (yk, τk) as the bivariate

response. To select the optimal number of states N∗, I use the Bayesian Information

Criterion (BIC), a penalized likelihood criterion for model selection [33]. I begin fitting

with the simplest model where N = 2. At each iteration, as long as the BICN of

this step is still less than that of the previous BICN−1 (i.e., BIC keeps decreasing as

the fitness improves while accounting for model complexity), I keep incrementing N . I

stop when the current BIC becomes greater than the previous, i.e., it has reached the

“elbow”. The optimal number of states N∗ is that of the previous step.

I use the set of states S to define the clusters of locations, where each Sk ∈ S forms a

cluster. For each Sk, I extract the parameter vector Θk = (θ1, . . . , θd) of the discrete

multinomial response, which is a vector of probabilities of each location j ∈ G being

visited while the agent is in the cluster Sk. Let Cj be the coordinates (latitude and

longitude) of each location j ∈ G, I compute the coordinates of the cluster centroid rk

of Sk as the weighted sum rk =
∑d

j=1 θjCj . As a result, locations with high probabilities

(i.e., likely to be in the cluster) have more weights, while those with low probabilities

(i.e., unlikely to be in the cluster) have less weights.

Fig. 4.3 illustrates the concept. It shows the real-world locations of attractions in the

theme park considered in the experiments being mapped to their nearest cluster centroids

derived from the hidden states of a 4-state HMM. The HMM was fitted using real-world

trajectories of visitors to the theme park. In the figure, the attractions are indicated by

filled circles and the mappings indicated by straight lines emanating from the centroids.

Coordinates of the centroids are computed by the weighted sums as described above.

4This is because, at any time, a location j ∈ G has a certain probability of being visited by the agent,
and the probabilities of all locations must sum up to 1.
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Figure 4.3: Illustration of POIs being mapped to their nearest cluster centroids (i.e.,
reference points) derived from the hidden states of a 4-state HMM. Four states of the
HMM form four distinct clusters, each having a cluster centroid as illustrated. Mappings
are indicated by straight lines emanating from the respective centroids. The HMM was

fitted using real-world trajectories collected in the Sentosa theme park.

Attractions filled with the same colors are in the same cluster (i.e., they having the same

centroid mapping) according to the heuristic.

4.7 Experiments

4.7.1 Dataset

I collaborated with the Sentosa theme park in Singapore to collect data from their

visitors. My dataset contains the visitors’ trajectories for the first 4 months of 2014.

The dataset comes from an attraction bundling scheme marketed by the developer under

which visitors can select any Q = 4 attractions out of a set of 16 and pay upfront a fixed

price (independent of their choice). Visitors can redeem their chosen attractions on a

chosen day and during a specified period from 9 a.m. to 7 p.m. of the day only. Each

chosen attraction can only be redeemed once.

The dataset contains the trajectories of n = 6, 400 unique and independent visitors (i.e.,

if a visitor is observed to have traveled in a group of the same trajectories, I take only one
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member of the group). I also have certain demographic features of the visitors, which are

not discussed here for brevity. Table 4.2 summarizes the sequence length (l) and the first

timestamp (τ1) variables of the dataset. It shows that not everyone managed to redeem

all 4 attractions they had chosen, although the majority did. Indeed, about 74.69% of

the visitors managed to redeem all 4. Variable τ1 measures the number minutes since

the reference time (9 a.m.) to the first redemption, which can partially explain: while

those who arrived early enough could redeem all 4, while those who came “late” couldn’t

(as their ticket expired at 7 p.m. on the day).

Min. Q1 Median Mean Q3 Max.

l 1.00 4.00 4.00 3.78 4.00 4.00
τ1 8.57 173.60 254.70 259.70 343.10 604.90

Table 4.2: Summary statistics of the sequence length (l) and first timestamp τ1
variables. Q1 and Q3 means the first and the third quartile, respectively.

4.7.2 Baseline Methods

I use the following baseline methods for comparison. In all of my experiments, I base

my predictions on the knowledge of the first redemption of some form. The first baseline

is to select 3 unique attractions randomly out of the set of 15 (16 less one) given the

first attraction in the bundle. I call it the Random baseline. The second baseline is to

choose k = 3 (physically) nearest attractions to the first redemption, which I call the

k-NN baseline because it is essentially the k-nearest neighbors algorithm.

The third baseline is based on a recent method proposed by Mathew et al. [70] to

predict future locations of a mobile agent based on past and current trajectories. The

method can be concisely described as follows: (1) Cluster the set of trajectories into K

clusters (something similar to Sect. 4.4); (2) Train a separate HMMk for each cluster k;

(3) Given a test agent i, his class label Clik, and the current trajectory, derive the most

likely current state Sit of the HMMk that i is in using Bayes’ rule; and (4) Using the

forward algorithm, derive the next sequence of 3 most likely locations conditioned on

Sit . In my case, the current trajectory is simply the first known location and timestamp.

I call this the HMM baseline because it is heavily based on HMM inference.
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4.7.3 Proposed Methods

My first two methods are the implementations the proposed framework using the two

heuristics: first-location and centroid heuristic. I call them VR1 and VR2 respectively.

(“VR” stands for value ratio, which is the central concept of the solution. Refer back

to Sect. 4.5.) For VR2, given an agent i’s first location yi1, I map that to the nearest

centroid rij to derive pij . By doing so, I do not need to know the explicit information of

yi1, but which centroid it is nearest to. I call this the implicit information of yi1.

The third method is the partial implementation of my proposed framework using the

centroid heuristic. Instead of using the full set of centroids derived from the hidden

states of an HMM, I take randomly a fraction of that. In particular, given a fitted

HMMk, I select randomly 60% of the number of states of HMMk to derive a partial set

of centroids C ′k. My rationale for this is to empirically estimate the optimality of the full

set of centroids, i.e., I want to see how much the accuracy will be decreased (if any) if a

partial set of centroids is used for predictions. In other words, I am asking whether the

full set of centroids is an optimal set or can I achieve the same level of accuracy using

less information? I call it VR3 for convenience.

For these, I derive a test agent i’s class label Clik using a decision tree trained on their

features and first timestamps. Budget constraint Bi is calculated as the remaining time

from their first timestamp until 7 p.m. It is worth stressing that for all these methods

(including the baselines), except for VR2 and VR3, explicit information of the first

location was used for make predictions; hence, the task reduces to predicting 3 locations

out of 4. Whereas for VR2 and VR3, implicit information of the first location was used;

the task remains predicting a full bundle given incomplete information.

4.7.4 Evaluation

For each agent i ∈ T , let x∗i and x̂i be i’s actual and predicted bundle, respectively. Note

that x∗i and x̂i may not be of the same size. I construct a weighted complete bipartite

graph G = (U = x∗i , V = x̂i, E) where each edge e = (x∗ij , x̂ik) ∈ E is weighted by the

physical distance between any pair of locations x∗ij ∈ x∗i and x̂ik ∈ x̂i. Denote the weight

of e as w(e). Let δ(x∗i , x̂i) be the distance between x∗i and x̂i, I calculate δ(x∗i , x̂i) using

Algorithm 1. The rationale for using physical distance as the benchmark for prediction
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accuracy is because my costs are approximated by such distances. Also because busi-

nesses of similar nature tend to cluster geographically in real life, two locations are likely

close semantically if they are physically close.

Using Algorithm 1, I calculate the distance δ(x∗i , x̂i) for each agent i ∈ T . To evaluate

all the predictions, I take the mean and median distance (δ̄ and δ̃ respectively) over all

δ(x∗i , x̂i). Hence, the lower δ̄ (or δ̃) is, the more accurate my predictions are on the whole.

Algorithm 1 The evaluation procedure

1: δ(x∗i , x̂i)← 0
2: while |U | > 0 and |V | > 0 do
3: e∗ ← mine(E)
4: δ(x∗i , x̂i)← δ(x∗i , x̂i) + w(e∗)
5: E ← E − e∗
6: end while

4.7.5 Results

The trajectory clustering results in K = 4 clusters (class labels) using ∆τ = 5 minutes

(refer to Sect. 4.4) for all the agents. The value of K was chosen based on a combination

of my domain knowledge and choosing the best clustering consistency index (i.e., the

silhouette coefficient). Fig. 4.4 visualizes those 4 clusters. The horizontal axis of each

cluster represents the discretized timeline (by ∆τ ) from 9 a.m. to 7 p.m. and the vertical

axis represents the probability of each agent belonging to each class being in any one of

the 16 attractions at any time interval. The attractions are identified by their unique

ID’s and color codes shown in the legend at the bottom of the figure. I denote “0”

(white) when I don’t know the precise location of an agent during a period (i.e., he was

not at any particular attraction during the time interval according to the data).

Fig. 4.4 shows that the 4 clusters have rather distinct temporal behaviors: Cl3 has

its peak of activities the earliest, which is followed by Cl1, then Cl4, and finally Cl2.

This suggests the existence of 4 different “waves” of visitors that flow through the

attractions in the park, from entering, peaking, to exiting. Visually, Cl3 are the “early

birds” and Cl2 are “latecomers”. I also observe certain differences in the preferences for

the attractions across the clusters represented by the probabilities of attraction visits.

However, these differences are not very distinguishing on the whole: popular attractions
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Figure 4.4: Visualization of 4 clusters (i.e., “class labels”) 1–4 of the trajectory data.
Horizontal axes represent the timeline in discrete intervals of 5 minutes from 9 a.m.
to 7 p.m. Vertical axes represent the probability of the visitors of each class being
in each of the 16 attractions (or at some unknown location “0”), represented by their

corresponding color codes whose legend are shown at the bottom of the figure.

remain (more or less) popular across the clusters and unpopular ones remain unpopular.

This is particular true for clusters 1, 2, and 4; while for cluster 2, there is a sudden surge

in demand for attraction 7 towards the end, which distinguishes it more from the rest.

For each method, I perform a 10-fold cross-validation (CV) to measure its accuracy on

predicting bundles. For each fold, I compute the mean δ̄ and median distance δ̃ of the

predictions. I finally compute the average accuracy (i.e., the mean of both δ̄ and δ̃) over

the 10 folds for each method. Fig. 4.5 shows the mean and median accuracies of all the

methods considered averaged over their 10-fold CV.

4.7.6 Discussion

Fig. 4.5 shows that my proposed methods (VR1 – VR3) have the most accurate predic-

tions (lowest distances) on average. In particular, the proposed method (VR2) is more

accurate than the baselines by at least 20% (i.e., comparing to HMM). The baseline

methods are (in the order to decreasing accuracy): HMM, k-NN, and Random, which
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Figure 4.5: Accuracies of all the methods benchmarked averaged over 10-fold CV.
Accuracies are measured by the mean (and median) distance between predicted and
actual bundles in kilometers (KM). The proposed methods (VR1 – VR3) result in better

accuracies in general compared to the baselines (HMM, k-NN, and Random).

is not surprising because that is also the decreasing order of their sophistication. Re-

markably, using implicit information (VR2), I have achieved as much accuracy as using

explicit information (VR1). This empirically supports my centroid heuristic: I only need

to know implicitly where an agent intends to visit to make a good enough prediction. At

the same time, the centroid heuristic requires much less information to make inferences

(i.e., N∗ cluster centroids as opposed to the full 16 first locations as in VR1, where N∗

is in the range 7–9 in my experiments).

Another notable observation Fig. 4.5 is that randomly selecting 60% of the set of

centroids (VR3) does make predictions less accurate, even though by a small amount

(for both the mean and median distance). This shows that the full set of centroids

is indeed an optimal one such that using less information (VR3) leads to decreased

accuracy and using more information (VR1) does not increase the accuracy. On the

other hand, while VR3 is technically less accurate than VR2, the difference is really

small compared to the reduction in information requirement (VR3 requires 40% less

information than VR2). This suggests that my proposed centroid heuristic is also quite

resilient to missing information as long as I get most of the reference points right.
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4.8 Conclusion

In this chapter, I have introduced the problem of predicting a bundle of goods, where

the goods here are a set of spatial locations that an agent wishes to visit. I look at

the problem from an economic point of view where agents choose their bundles by

optimizing the values of the goods considered over some utility function subject to their

budget constraints. To this end, there exists a rich literature to address the problem

called revealed preference (RP) analysis. The fundamental problem of RP analysis is to

recover the unknown utility functions of the agents given observations of their purchased

bundles at the prevailing prices and budget constraints. In this work, I assume the

agents have linear utility functions so that the problem reduces to recovering the vector

of values of the agents for the goods considered. Motivated by a recent line of work that

has established efficient algorithms for learning values from RP data, I adopt and adapt

one such algorithm to solve my problem. I also blend in two important techniques from

spatiotemporal analysis: trajectory clustering and location clustering in order to make

the problem feasible in my particular setting where cost information is unobserved. For

location clustering, I propose the centroid heuristic, in which I use HMMs to derive

the reference points as cluster centroids based on where the agents use to infer their

perceived costs. I experiment my proposed methods with real-world trajectory data

collected from a theme park, my predictions are significantly more accurate than the

baseline methods. I also see that the proposed centroid heuristic not only requires less

information, but it is also resilient to missing information.

There are limitations to this work. First, I have only considered unordered sets of spatial

locations; however, in reality, agents consume spatial goods by visiting them in sequence.

There is an intrinsic ordering nature of the goods that I haven’t yet taken into account.

As a result, comparing between predicted and actual bundles should also consider the

sequential order of the goods. Second, the proposed problem and solution may not

be applicable to predicting long sequences (both in quantity and geographically) as in

such cases, agents typically decide their next future location based on the current one

only and not on past locations (i.e., the Markov property). Finally, I have not been

able to establish the relationship between the amount of information required to make

predictions and its accuracy. These are the work left for the next chapter.



Chapter 5

Trajectory Prediction under

Uncertainty & Budget Constraint

5.1 Introduction

How does a rational agent decide to visit a set of locations in space? Assuming there

are distinct points of interest (POIs), then the act of visiting them has to happen se-

quentially. I call it spatial sequential decision-making. It is reasonable to assume that

each location bears a non-negative utility (reward) to the decision-maker that would not

be fully realized until it is visited. Until then, utilities remain uncertain and reflect the

agent’s prior preferences. When making sequential decisions, a rational agent should

also weigh in the long-term costs of visiting each of the locations in order to make an

optimal plan, where “costs” here are assumed to be proportional to physical distances.

Hence, answering the question above would require a model of the agent’s sequential

decisions for selecting locations, whose utilities remain uncertain and costs are dynamic,

and weighing in their long-term consequences into the decision-making [55].

In practice, the agent typically has a limited amount of resources (e.g., time) to run its

plan, which I call a budget. Such a budget constraint can significantly shape the agent’s

decision-making process and outcomes in non-obvious ways. This chapter follows up

from the previous one to propose a framework based on reinforcement learning [96] to

model the agent’s spatial sequential decision-making, taking into account the uncertainty

of the utilities and the budget constraint. Using the framework, I could discover the

52
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Figure 5.1: Visualizing the attractiveness of the same set of POIs in a real-world theme
park environment and the pairwise transition probabilities (only those probabilities
≥ 0.20 are drawn) between them as observed by two groups of agents: “Type 1” and
“Type 2”. Each group is given a certain amount of time budget to visit the set of POIs,
where Type 1 has, on average, 114 minutes more than Type 2. The size of each POI is
drawn to reflect its relative popularity (attractiveness) among members of each group.

underlying processes that drive real-world behaviors such as the condition for making

long-term optimal decisions. Indeed, traditional economic view of rational decision-

making as solving an optimization problem often fails to predict reality due to bounded

rationality [37]. Such discoveries would give insights into real-world human behaviors

and help bridge the gap between human and machine intelligence [55, 118].

My motivation comes from the problem of predicting the next sequence of location visits

(called trajectory) of a mobile agent knowing its current trajectory and past observed

trajectories of other similar agents. Accurate predictions of the agent’s next locations

can enable numerous applications of location-based services such as real-time prediction

of visitor arrivals and congestion at POIs or devising real-time advertising or adaptive

recommendation system for a mobile agent knowing its probable future trajectory.

Consider the example illustrated in Fig. 5.1, whose data were collected from real-world

human trajectories in a theme park (to be described in Section 5.6.1). In this setting,

suppose there are two groups of agents (human visitors) of equivalent sizes called “type

1” and “type 2”. Each agent in each group is to visit the same set of POIs within a given

time frame (budget). Agent type 1 is given, on average, 114 minutes more than type

2. Such a budget difference can translate into starkly different behaviors as illustrated

in the figure. Not only is the relative attractiveness of each of the POIs different, but

the pairwise transition probabilities among them also become discernibly distinct. Type

1 appears to have a larger “coverage” of the POIs through their sequential transitions,

while type 2 tends to visit those POIs that are clustered together. These observations
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reflect the inherently different underlying decision processes used by these agent types.

Thus, in order to make accurate trajectory predictions, it suffices to model the sequential

decision-making process of each group separately.

In this chapter, I develop on and extend the capabilities of the framework proposed by

Le et al. [57] in the previous chapter for spatial decision modeling. Specifically, I set out

to predict an ordered sequence of an agent’s future locations (as opposed to an unordered

bundle). Furthermore, my novel contribution is that I do not rely solely on a generative

model as previously proposed to generate sequential actions (e.g., naive Bayes [51] or

hidden Markov models (HMMs) [70]). Instead, I integrate one of such (i.e., HMMs) into

a reinforcement learning framework to model an agent’s sequential decisions. I further

propose decision models based on the learned utilities resulted from the framework for

trajectory prediction. Doing so enables us to explain the underlying processes of the

predicted outcomes, the effects of budget constraint on decision-making, and evaluate

the appropriateness of the proposed decision models.

5.2 Problem Statement

I consider a set D of agents and a finite set G (|G| = d) of POIs (locations). Each agent

i ∈ D has a utility vector vi over each location j ∈ G, where vij ∈ R≥0 is the utility of j

to i. Agent i has a budget constraint Bi and wishes to visit a subset si ⊆ G such that
∑

j∈si cij ≤ Bi, where cij is i’s cost of visiting j. I denote si as agent i’s trajectory that

contains the ordered sequence of locations visited by i and the corresponding timestamps.

Without loss of generality, I assume throughout that the costs and budget constraint

are in terms of travel time and i makes a binary decision vector si ∈ {0, 1}d. Hence,

cij is a dynamic cost for each j that depends on the previous location in the sequence.

I additionally assume the proportionality between distance and travel time, where all

distances considered in this chapter are spatial Euclidean distance.

Suppose D can be divided into non-overlapping subsets called agent types, where each

“type” implies homogeneous preferences and behaviors. Given an agent of a certain

type, his partial trajectory (say the first n location visits) and the current budget, my

goal is to predict the agent’s remaining trajectory. The notion of agent type comes from

the idea that modeling each individual agent is impractical. It is much more feasible to
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Figure 5.2: The framework to model and predict the remaining trajectory of a test
agent i ∈ T given its observed partial trajectory s̃i, current budget Bi, and trajectories
of the agents in the training set S. S is the finite set of states, P is the matrix of state

transition probabilities, and f is the set of feature vectors of the states in S.

divide them into finite and disjoint clusters of similar preferences and behaviors. Thus,

I also use the terms “cluster” and “(agent) type” interchangeably.

Predicting an agent’s remaining trajectory requires sequential decision modeling under

uncertainty and budget constraint. The uncertainty comes from the utility distributions

of the remaining locations. While the relative attractiveness of the locations can be

easily worked out using a simple frequency count, it is not straightforward how to learn

their utility distributions from the observed trajectories and how to incorporate them

into a sequential decision-making model.

5.3 Solution Overview

I propose an integrated framework to model and predict the next sequence of locations

given an agent’s observed partial trajectory and budget constraint. The framework

consists of two components: learning and prediction. Learning clusters the agents into

finite types, models their sequential visits using a discrete-state transitions and learns

from which the utility distribution of each of the locations. Prediction maps a given

agent to a type, derives the most probable state sequence of its observed trajectory,

estimates a goal that the agent is trying to achieve, and generates the next sequence of

visits that would meet that goal. Fig. 5.2 illustrates the overall framework. Table 5.1

summarizes the additional notations used in this chapter.
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Table 5.1: Summary of additional notations used in this chapter. Reintroduced
notations override those introduced earlier.

Notation Description
vij , cij Utility and cost of location j ∈ G for agent i
si, s̃i, Bi Trajectory, partial trajectory, and current budget of i
li Trajectory (sequence) length of agent i
S Finite set of (hidden) states for each agent type (|S| = N)
Pa(s, s′) Probability of going from state s to s′ by taking action a in s
fs Feature vector of each state s ∈ S
Rk State-reward matrix ∀ agent type k (1 ≤ k ≤ K)
Ra Location-reward matrix for each location a ∈ G
Qi Expected reward level (“personal goal”) of agent i

Learning. I first divide the agents in the training set S into K finite clusters, where

each cluster Clj (1 ≤ j ≤ K) represents an agent type. K is typically chosen heuristically

via some clustering coefficient (e.g., the silhouette index). Using the agents’ observed

features and the K clusters as class labels, I train a multi-class classifier (e.g., multi-

nomial logistic regression). I also model the environment that the agents interact with

as a finite set of states S, where each state s ∈ S has a distinct vector of features fs.

I use hidden Markov models (HMMs) to transform the observed trajectories into finite

sequences of states. Such a representation can then be modeled as a Markov decision

process (MDP). The utility of each action (i.e., location visit) can then be derived via

the process of inverse reinforcement learning (IRL) using the agents’ observed actions

(represented in the transition probability matrix P of the MDP). The final outcomes of

IRL are the reward matrices R.

Prediction. Given the observed partial trajectory and features of an agent i in the test

set T , I first predict i’s type Clik using the trained classifier above. I then use the Viterbi

algorithm [32] to find the most probable sequence of states s̃i for the observed trajectory.

I am then able to model i’s goal Qi (also called the “expected reward level”) and predict

the next sequence of visits that can meet this goal within budget Bi. I finally propose

two decision models that take into account the uncertainty of the utilities (represented

by the matrix Rk for each type k) and budget Bi.

I next elaborate on each of the components of the framework shown in Fig. 5.2.
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5.4 Learning

5.4.1 Environment Modeling

I use hidden Markov models (HMMs) to model the environment the agents interact with

as a finite set of states S = {S1, S2, . . . , SN}. Refer to Section 4.6.1 for background and

notations of HMMs, which are reused in this chapter. In my modeling, each emission

yt of a hidden state xt is a tuple (yk, τk) with the spatial component yk being a discrete

location drawn from G and the temporal component τk being a continuous timestamp

drawn from the Gaussian distribution N (µk, σk) (1 ≤ k ≤ N).

Each hidden state of the HMM can be thought of as a spatiotemporal cluster of the

visiting activities. Empirical observations confirm that nearby locations are much more

likely to be visited sequentially in short periods of time, i.e., having “high” emission

probabilities. I fit the HMMs using the trajectories s(i) ∀i ∈ S. A well-known method to

estimate the parameters of an HMM is the Baum-Welch algorithm [8]. For each HMMj

(1 ≤ j ≤ K), I select the optimal number of states N∗j using the Bayesian Information

Criterion (BIC) [33] as described in Section 4.6.2. An important inference problem is

that given a sequence of observations, find the most probable sequence of hidden states

that produces it, which can be solved using the Viterbi algorithm [32].

5.4.2 Inverse Reinforcement Learning

5.4.2.1 Preliminaries

Markov decision processes (MDPs) [11] provide an elegant framework to model sequential

decisions in an environment represented as a finite state space S. At each state s ∈ S,

the agent chooses an action a ∈ A. Upon which, the process transitions into the next

state s′ ∈ S according to the probability Pa(s, s
′) = Pr(St+1 = s′|St = s, at = a). The

agent then receives a reward Ra(s, s
′). The main concern of MDP is to find an optimal

policy π∗ : S 7→ A that maximizes the long-term cumulative reward
∑
t
Rat(st, st+1).

Let Pπ(s) represent the transition probability matrix corresponding to the applica-

tion of some policy π. A finite-horizon MDP is completely described by the tuple

(S,A, Pπ(s), R). The value function V π(s) of policy π at state s represents the expected
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cumulative reward from s. Thus, my goal is to find an optimal policy π∗ such that

V π∗(s) is maximized. It can be shown that there exists at least one optimal policy such

that V π(s) is maximized for all s ∈ S [96] that can be expressed as:

π∗(s) ∈ arg max
a∈A

∑

s′∈S
Pa(s, s

′)[R(s, s′) + γV π(s′)]. (5.1)

A fundamental property of the value function is, for any policy π and any state s:

V π(s) = Rπ(s)(s) +
∑

s′∈S
Pπ(s)(s, s

′)V π(s′). (5.2)

Eqn. (5.2) (famously called the Bellman equation) directly gives rise to efficient dynamic

programming (DP) formulations to find a long-term optimal policy π∗ [11].

Inverse reinforcement learning (IRL) is the inverse problem to MDP, whose goal is

to determine the reward function R that is being optimized given observations of the

sequential decisions. Ng and Russell [75] originally propose LP formulations to solve

the problem with constraints leading to the optimal observed policy. Abbeel and Ng

[2] later propose a strategy of matching feature expectations between an observed policy

and an agent’s behaviors. The strategy is both necessary and sufficient to achieve the

same performance as if the agent were in fact solving an MDP with reward function

linear in the features of the states. Denote ξi a state-based trajectory (a.k.a. a “path”),

f the sequence of feature vectors of a path, and f̄ = 1
m

∑
i fξi the empirical expected

feature count based on m trajectories. Matching feature expectations is described by:

∑

ξi

Pr(ξi)fξi = f̄ . (5.3)

In this work, I adopt the maximum entropy (MaxEnt) IRL algorithm [117] to learn the

reward1 distribution of each state. MaxEnt IRL is an effective framework for modeling

and understanding human activities, where the recovered reward function intuitively

encodes an individual’s set of preferences [43]. The notion of reward distribution comes

from the fact that different people, even if classified into types, would still have different

preferences (utilities) for the same thing. Such diversity in tastes can be best modeled

as a probability distribution.

1In the context of the problem studied, reward is a positive utility received by visiting a POI. Given
that a “state” is a cluster of POIs, reward of a state is the sum of the utilities of the POIs in the cluster.
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5.4.2.2 Maximum Entropy IRL (MaxEnt IRL)

Given a state-action sequence ξ = {(s, a)}i, where si ∈ S and ai ∈ A, agent i is opti-

mizing some function that linearly maps the features of each state fsj ∈ Rk to a reward

value that represents i’s utility of visiting that state. This function is parameterized

by some weight vector θ and the reward of a trajectory is simply the sum of all the

state rewards along the path. The reward weights are applied to the path feature counts

fξ =
∑

si∈ξ fsj such that the reward of the trajectory is the weighted sum of the feature

counts along the path:

R(fξ) = θ · fξ =
∑

sj∈ξ
θ · fsj . (5.4)

Since many distributions of paths may match the feature counts and any one distribution

from among this set may exhibit a preference for some of the paths over others not

implied by the path features. Such ambiguity is solved using the principle of maximum

entropy by choosing the distribution that does not exhibit any additional preferences

beyond matching feature expectations. The resulting distribution over the paths is

parameterized by the weights θ:

Pr(ξi|θ) =
1

Z(θ)
eθ·fξi =

1

Z(θ)
e
∑
sj∈ξi θ·fsj , (5.5)

where Z(θ) is some partition function for the parameter weights. This distribution also

provides a stochastic policy (i.e., a distribution over the actions at each state). Refer

to [117] for more details. The probability of each action is weighted by the expected

exponentiated rewards of all paths that begin with that action. Maximizing the entropy

of the distribution over paths subject to feature constraints implies that I maximize the

likelihood of the observed data under maximum entropy distribution, which is convex

and whose optima can be obtained using gradient-based optimization methods [117].

I now build an MDP model (S,A, P,R) for each agent type, where S is the set of states

of the corresponding HMM and A is the set G of locations. I then need a set of state

sequences in order to derive the transition matrix P and reward function R. To this

end, I convert each trajectory into its most probable sequence of (hidden) states using

the Viterbi algorithm [32]. P is then derived by sampling the observed state transitions

and action taken at each state.



Chapter 5. Trajectory Prediction under Uncertainty & Budget Constraint 60

MaxEnt IRL additionally requires a set of features fs for each state s ∈ S. I use the

spatiotemporal characteristics of each state as its features. Specifically, recall that each

state Si of the HMM is both a spatial cluster (i.e., what locations are likely to be

visited) and a temporal cluster (described by the Gaussian mean µi). I use the tuple

(loi, lai, µi, σi) as the features fSi of Si, where loi and lai are the “mean”2 longitude and

latitude coordinates of Si and µi and σi are the mean and standard deviation of the

Gaussian emission, respectively. Such weighted sum of the coordinates are referred to

as the “cluster centroids” of the states. Hence, each state Si admits a unique cluster

centroid Ci described by its (loi, lai).

Each run j of MaxEnt IRL produces a unique reward function Rj : Si 7→ R+,∀1 ≤ i ≤ N .

In order to produce a distribution of reward for each state, I split the trajectories into

subsets and run MaxEnt IRL on each subset to get a unique reward function. The

probability of each reward value is the proportion of the subset in the original set.

Towards this end, I split the trajectories into subsets of equal sequence lengths and run

MaxEnt IRL on each of them.

The distribution of reward for each location is computed as follows. Let Rs be a state-

reward matrix. Rs is of dimension l ×N , where N is the number of states and l is the

maximum sequence length. For each state Sk (1 ≤ k ≤ N), let pk of length d = |G| be

the vector of multinomial emission probabilities of the HMM. Let Π be the multinomial

emission matrix of dimension N × d whose row vectors are pk. I compute the location-

reward matrix Ra as:

Ra = Rs ×Π. (5.6)

Assuming the stochastic reward R(a) of each location a follows a Gaussian distribution,

its mean and variance can be derived from the corresponding column vector of Ra.

5.5 Prediction

I present two decision models to the problem of trajectory prediction: Adaptive MDP

(AMDP) and Value Ratio (VR). The former follows the long-term optimal policy of an

MDP and the latter uses myopic greedy heuristics to make decisions.

2Precisely, loi and lai are the sum of the coordinates of the locations weighted by the multinomial
emission probabilities at Si.
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5.5.1 Adaptive MDP

Empirical evidence shows that the sequence lengths of the trajectories typically follow

normal distributions [55, 56, 64]. I take advantage of this to introduce stochasticity of

reward and policy into my model by splitting the training set into subsets of the same

sequence lengths. For each subset, I learn a unique reward/policy function. In the end, I

come up with a reward/policy matrix, where for each matrix, the columns are the states

and the rows are the sequence lengths whose probability distribution follows that of the

sequence lengths.

I now obtain the following matrices from the training set for each agent type:

1. Rs (or R): each entry is the reward (column) of each state that corresponds to

each sequence length (row);

2. V (l×N): each entry is the value (column) of each state that corresponds to each

sequence length (row);

3. Optimal policy matrix Π∗ (l ×N): each entry is an optimal action a ∈ A at each

state (column) that corresponds to each sequence length (row).

From R, I am able to derive the Gaussian distribution of reward R(s) at each state

s ∈ S using the probability distribution of the sequence length (i.e., the rows).

An important consideration in my model is the agent’s expected reward level. This

comes about from the observation that an agent may finish its trajectory even when

there is sufficient budget to go on. Such behavior may come from an intrinsic expected

reward level, such as a “personal goal”, having been met. Once such goal is met, the

agent would just be happy to finish there and then and not go on to maximize the

cumulative reward any further. In order to model such a personal goal, I make use

of the value function. From Eqn. (5.2), the value function at state s is sum of the

immediate reward Rπ(s)(s) and the future expected reward. I use this future expected

reward to model agent i’s expected reward level Qi:

Qi = V π(s)−Rπ(s)(s). (5.7)
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Algorithm 2 Adaptive MDP decision model for agent i

1: Given agent i’s partial trajectory s̃i = {(s, a)}i of current length n and i’s current
budget Bi > 0

2: Let s = s̃i[n] be the current state
3: Sample reward R(s) from Gaussian distribution
4: Retrieve current state’s value V[n, s]
5: Let Qi = V[n, s]−R(s) be i’s expected reward level
6: Initialize i’s future cumulative reward Ui ← 0
7: Let ŝi ← ∅ be the predicted sequence
8: while Ui < Qi and Bi > 0 do
9: Sample an action a from policy Π∗[n : l, s]

10: while a ∈ s̃i {a has been visited} do
11: Repeat Step 9
12: end while
13: Sample next state s′ from Pa(s, s

′)
14: Update n← n+ 1; s← s′

15: Update ŝi ← ŝi ∪ (s, a); s̃i ← s̃i ∪ ŝi
16: Sample reward R(s) from Gaussian distribution
17: Let ta be the travel time from current location to a
18: Let ∆a be the minimum duration to be spent at a
19: Update Ui ← Ui +R(s); Bi ← Bi − (ta + ∆a)
20: end while
21: Return the sequence of actions in ŝi

Since both V π(s) and Rπ(s)(s) are given (by V and R(s), respectively), I can derive Qi

for each agent i knowing its current state s and the sequence length n. Furthermore,

the optimal policy matrix Π∗ is stochastic because, given a state s, each column vector

of policies Π∗[:, s] is distributed according to the Gaussian distribution of the sequence

length. Algorithm 2 describes the Adaptive MDP decision model.

Algorithm 2 follows the long-term optimal policy of an MDP because it makes use of the

optimal (stochastic) policy function to make decision at each step. The policy function

is long-term optimal as a result of solving the Bellman equation (5.2).

5.5.2 Value Ratio

At each time step, the agent samples a random reward value rj from the Gaussian

distribution R(aj) of each of the remaining locations aj . Given its current location, the

agent heuristically maps itself to the nearest cluster centroid (refer to Sect. 5.4.2.2) as

a “point of reference” and derives the distances dj from the cluster centroid to each of

the remaining locations. The agent then chooses to visit the location j∗ that has the

largest ratio rj/dj (i.e., the ratio of the immediate reward to its cost) and repeats until
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its budget runs out or there is no unvisited location left. This is the well-known best

“bang-for-the-buck” greedy heuristic [7]. Algorithm 3 describes the model.

Algorithm 3 Value Ratio decision model for agent i

1: Given agent i’s current location ai, its current set of unvisited locations Gi ⊆ G and
the current budget Bi > 0

2: Let ŝi ← ∅ be the predicted sequence of visits
3: while |Gi| > 0 and Bi > 0 do
4: Sample reward rj from Gaussian distribution for each aj ∈ Gi
5: Let Ck∗ = arg mink distance(ai, Ck) (1 ≤ k ≤ N)
6: Let dj = distance(aj , Ck∗), ∀aj ∈ Gi
7: Select aj∗ where j∗ = arg maxj rj/dj , ∀aj ∈ Gi
8: Update ŝi ← ŝi ∪ {aj∗}; Gi ← Gi \ {aj∗}
9: Let tj∗ be the travel time from ai to aj∗

10: Let ∆j∗ be the minimum duration to be spent at aj∗

11: Update Bi ← Bi − (tj∗ + ∆j∗); ai ← aj∗

12: end while
13: Return ŝi

5.6 Experiments

5.6.1 Dataset

I collaborated with the Sentosa theme park in Singapore to conduct experiments and

collect demographic and behavioral data from their visitors from January to April, 2014.

The dataset contains the visitors’ trajectories tracked using RFID devices. In the ex-

periments, visitors pay upfront a fixed amount in order to redeem up to 14 participating

attractions. Visitors can only redeem the attractions during the specified 10-hour period

from 9 a.m. to 7 p.m. on a chosen day. Each attraction can only be visited once.

My dataset D contains trajectories of 3, 867 unique and independent visitors together

with their demographic features. The empirical distribution of the sequence length of

these trajectories follows a typical bell-shaped characteristic of a Gaussian distribution.

5.6.2 Trajectory Clustering

I perform cross-validations3 (CVs) on D. For each fold, the training set S is used for

trajectory clustering and decision modeling. My hierarchical clustering results in K = 2

3Precisely, I performed 3-fold CV to ensure a large enough training/test partition per fold.
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Figure 5.3: Visualization of the two clusters (agent types) of the training data in the
experiments. Horizontal axes represent the timeline in discrete intervals of 5 minutes
from 9 a.m. to 7 p.m. Vertical axes represent the probability of agent of each type
being at each of the attractions (or at some unknown location “0”) shown in the legend.

clusters using the interval ∆τ = 5 minutes (refer to Section 4.4) for all the agents.

The value of K was chosen based on inspection of the hierarchical tree and empirical

goodness of clustering via the silhouette coefficient [46] (i.e., partitions of comparable

sizes and good in-group cohesiveness).

Fig. 5.3 visualizes the 2 clusters using training data of one of the random folds. The

horizontal axes represent the discretized timeline (by ∆τ ) from 9 a.m. to 7 p.m. for

each cluster and the vertical axis represents the probability for each agent of each cluster

to be at any one of the 14 attractions at any interval. (Note that even after 7 p.m.,

some activities can still be recorded in the park.) The attractions are identified by their

numbers whose color codes are shown in the legend at the bottom. I denote “0” (white)

when I do not know for sure the location of an agent during a given time interval (i.e.,

he was not observed at any known attraction during the interval). It can be seen that,

most of the time, visitors hang out in the park without visiting any specific attractions.

The trajectory clustering reveals that the main differences between the two agent types

are their temporal behaviors. Agent type 1 tends to arrive earlier and has their peak of

visiting activities earlier in the day (around 12–1 p.m.), and then (their visit frequency)

sharply drops off. Whereas, agent type 2 tends to arrive much later and reaches their

peak later (at round 3–4 p.m.), and then gradually declines. If budget is defined as the
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duration from the time of entry until the closing time (7 p.m.), then agent type 1 has, on

average, 114 minutes more than agent type 2. As a result, I call agent type 1 the “early

birds” and agent type 2 the “latecomers”. The two clusters have roughly comparable

sizes with cluster 1 being 54.42% and cluster 2 being 45.58% of the set training S.

5.6.3 Evaluation

For each cluster in S, I learn the matrices R, V, and Π∗. The test set T is used to validate

the predicted trajectories. For each agent i ∈ T , let li be i’s final sequence length. I

first predict i’s type using its features and first timestamp via a multinomial logistic

model. Given i’s partial trajectory of length n, I predict i’s remaining trajectory while

varying n ∈ [2, li − 1]. Let s∗i and ŝi be i’s actual and predicted remaining trajectory,

respectively. I use the Levenshtein edit distance [12] to quantify the similarity between

s∗i and ŝi. Each match receives a fixed positive score and each mismatch incurs a negative

penalty proportional to the distance between the two locations.

The following baseline models are used for evaluation: At each time step,

1. HMM. Predict agent i’s current state s, generate an unvisited location based on

the state’s multinomial probabilities ps and repeat until its budget Bi runs out.

This method is based on [70].

2. Nearest neighbor. Agent i redeems a remaining location that is nearest to its

current location and repeats until Bi runs out.

3. Random. i redeems a random unvisited location and repeats until Bi runs out.

5.6.4 Results

My experimental results are summarized in Fig. 5.4 and 5.5. In Fig. 5.4, the mean

reward per attraction learned from IRL and Eqn. (5.6) is plotted together with its 95%

confidence interval (top panel). The figure shows that the mean rewards, in general,

faithfully reflect their respective empirical probabilities of attraction visit for both agent

types (i.e., their preferences – in the bottom panel).
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Figure 5.4: Comparison between the estimated reward distribution for each attraction
(“attrId”) (top) and the empirical visit probability for each attraction (bottom).

It is noteworthy to observe in Fig. 5.4 that agent type 2 has, for the most part, higher

(absolute) immediate reward per attraction (top panel) than agent type 1. This con-

sequentially differentiates the underlying decision processes employed by the two agent

types. Fig. 5.5 shows the distributions of the similarity measures (means and vari-

ances – represented by 95% confidence bars) across the models. Each distribution is

computed from the cross-validation while varying the observed partial trajectory length

n ∈ [2, li − 1]. A higher mean similarity implies a more accurate prediction, on average.

These distributions (in Fig. 5.5) are empirically verified to be Gaussian.

For agent type 1, Fig. 5.5 shows that the Adaptive MDP model has the most accurate

prediction, on average. The Value Ratio and HMM model both have about the same

second best average prediction score. The Random baseline model has the least accurate

average prediction, which is quite reasonable, followed by the Nearest Neighbor model.

For agent type 2, the figure shows that the Adaptive MDP model performs marginally

worse than the Value Ratio model, even though it still fares much better than the other

baselines. In other words, the Value Ratio model makes the most accurate prediction on

average, for this group of agents. This is an interesting result worth further discussion.
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Figure 5.5: Similarity measures between the actual and predicted trajectories for
proposed and baseline models: Random (“Rand”), Nearest Neighbor (“NN”), HMM,

Value Ratio (“VR”) and Adaptive MDP (“AMDP”).

5.6.5 Discussion

From trajectory clustering, I have discovered that agent type 1 are the “early birds”

and agent type 2 are the “latecomers”. From the perspective of modeling, agent type 1

has a much larger budget (by 114 minutes, on average) than agent type 2 does. Larger

budget means more flexibility, more foresight and better long-term planning, which is

what the Adaptive MDP model reflects: it embodies the long-term optimal policy of

MDP. This indeed performs better than other short-sighted baseline models.

Whereas, a smaller budget, which agent type 2 has, translates into less flexibility and

less time for careful planning, which ultimately results in more myopic and suboptimal

decisions (i.e., resorting to greedy strategies). This is reflected in the experimental

results, where the greedy and myopic Value Ratio model performs the best for agent

type 2 (even though just marginally better than Adaptive MDP). This myopic decision-

making corroborates with the observations in Fig. 5.4, where most of agent type 2’s

immediate rewards are larger (in absolute terms) than agent type 1’s such that it sees

less values in delayed (future) rewards and finds more incentives to act greedily [96].

This is also evidenced in Fig. 5.1, where agent type 2 has much stronger tendencies to

visit nearby attractions (i.e., maximizing the value ratio) than type 1.
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5.7 Conclusion

In this chapter, I address the problem unresolved from the previous chapter: trajectory

prediction. I use reinforcement learning to model the agent’s sequential decisions. By

doing so, I have discovered from real-world trajectories how people make decisions: they

make more optimal decisions when given enough time to do so. This is perhaps not

surprising in retrospect, because it is reasonable that foresighted decisions and careful

plans need time to coordinate, while myopic ones do not (as only the immediate rewards

are considered). On the other hand, this also validates my framework’s ability to model

real-world behaviors by finding out what makes reasonable sense in real life.

My main shortcoming here is the simplistic handling of the budget constraint. I would

like to see if handling it in more sophisticated ways would improve predictions. For

example, for foresighted agents, I would like to experiment with decision models other

than MDP in my future work. One of which is the adaptive stochastic knapsack [45],

which it is similar to a traditional knapsack model except for the sequential decisions

and stochastic reward of each item. Another shortcoming of this work is the simplistic

Value Ratio model for myopic decision-making (type 2), which yields just slightly better

prediction than the Adaptive MDP for agent type 2. Hence, for myopic agents, a more

sophisticated decision model may be desirable to better model and predict their behav-

iors. One of such model for sequential decisions has been proposed in the operations

research literature [94]. This is also worth investigating in the future work.



Chapter 6

Fine-grained Traffic Speed

Prediction Using Local Gaussian

Processes

6.1 Introduction

Big data captured in densely populated urban environments can provide multi-scaled

perspectives at the complex behaviors of urban systems in both space and time. Recent

advances in big data technologies such as sensor networks and the Internet of Things

(IoT) have accelerated the pace of spatiotemporal data collection in urban settings at

ever finer-grained scale. Such wealth of data can be turned into valuable knowledge

and insights that can be used to make cities more efficient, safer and enhance the living

standard of urban residents. This is a significant utility of big data as it has been

forecasted that, by 2050, 66% of the world’s population will be urban dwellers [41].

Traffic speed is a key measure of the efficiency of a city’s transportation system and the

mobility of its residents. Accurate modeling and prediction of traffic speed in a city are

therefore crucial to the city’s intelligent transportation systems (ITS) [104, 110]. Traffic

speed data are typically obtained from two main sources: one from GPS trajectories

generated by moving vehicles equipped with GPS trackers (e.g., taxicabs), and another

from static traffic readers or sensors located at fixed locations (e.g., traffic cameras or

loop detectors). GPS trajectories are often used as active mobile probes that can directly

69
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measure travel times and speeds along road segments [16, 29, 44, 81, 100]. However,

using such active probes also incurs high measurement variance due to inconsistent

driving behaviors and lack of control over route choices. Hence, a critical mass of probes

is needed for each road segment to obtain reliable measurements. Meanwhile, static

traffic sensors typically provide sparse spatial coverage due to their high installation

and maintenance costs. This leaves many road segments uncovered and unobserved and

makes it hard to accurately infer traffic speed. Indeed, recent surveys have indicated

that in most modern cities, only a few main roads have loop detectors installed [18, 89].

I address the problem of fine-grained traffic speed modeling and prediction in real-time,

where “fine-grained” here means extensive spatial coverage and fine temporal scales.

With fast and reliable traffic prediction, travelers can optimize their routes dynamically.

Traffic managers can also use such information to quickly develop proactive traffic control

strategies and make better use of the available transportation resources. Although many

navigation systems currently provide live traffic information for routing services, their

coverage is limited to major road segments and lacks the predictive capabilities of future

traffic conditions based on recent observations and historical data [18, 81]. In addition,

traffic speed in densely populated urban areas is often subject to short-term random

fluctuations and perturbations due to exogenous events such as weather conditions,

emergencies or traffic incidents [20]. As a result, I focus on short-term traffic prediction1

because I find the problem more realistic and challenging.

Gaussian processes (GPs) have been repeatedly demonstrated to be an effective tool

for modeling and predicting various traffic phenomena such as mobility demand [20],

traffic congestion [65], short-term traffic volume [104], travel time [44], and pedestrian

and public transit flows in urban areas [74]. Indeed, comparative studies on short-term

traffic volume prediction showed that GPs outperform other methods such as autore-

gressive integrated moving average, support vector machine, and multilayer feedforward

neural network for the task [104, 110]. A particularly attractive feature of GPs is their

fully non-parametric Bayesian formulation, which allows for explicit probabilistic inter-

pretation of the model outputs and confidence interval estimations [20, 92, 104]. Unfor-

tunately, GPs admit cubic time complexity in the size of the training data. This has

been a major limiting factor for the adoption of GPs to model big traffic data [20, 65, 67].

1“Short-term” can be subjectively defined based on the temporal scale of the sensor readings.
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I address the problem of efficient GPs for real-time traffic speed prediction based

on the idea of clustering spatiotemporal traffic data into “local” subsets of correlated

traffic patterns. I call such clustering localization [76, 92]. From each subset, a local GP

can be trained to make predictions of future traffic queries that could be heuristically

mapped to it using some similarity measure. Speed in each local subset is assumed

to have similar behaviors through space and time. To this end, I propose to use non-

negative matrix factorization (NMF) for fast localization. The idea of using local GPs

to infer data of clustered nature is not entirely new. Indeed, Snelson and Ghahramani

[92] first proposed local GPs for non-linear regression, where clustering is done based on

similarity of the responses in the training data. In this work, my adoption of the idea

using NMF for efficient traffic speed prediction is novel to the best of my knowledge.

I am able to empirically show significant improvements in both runtime performances

and prediction accuracies in diverse urban and geospatial settings using the proposed

approach compared with baseline methods. Thus, this work can be considered as a

hybridization of [104] that uses GPs for short-term traffic flow prediction and [92] that

uses the idea of clustering similarly behaved data to train local GPs.

In addition, I model traffic speed as spatiotemoporal GPs on road networks, by taking

advantage of the expressiveness of the GP kernel functions. Such expressiveness allows

us to model the topology and directedness of the road network, as demonstrated by Yu

and Chu [105]. I further take advantage of the additive kernel feature of GPs [27] to

incorporate side information2, where side information can be any spatial feature of the

road network that affects traffic speed through it. Through extensive experiments, I show

that there exists an intrinsic tradeoff between model expressiveness and computational

efficiency. Model expressiveness translates into more accurate predictions at the cost of

increased runtime. In practice, one needs to consider carefully such tradeoff and chooses

the most relevant side information to the traffic phenomenon being modeled.

6.2 Problem Statement

A city’s road network is a system of interconnected segments and points that represents

the land transportation network of a given urban area. A road network can thus be

2Strictly speaking, side information is defined as “the data that are neither from the input space nor
from the output space of the function, but include useful information for learning it” [47].
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Table 6.1: Summary of additional notations used in this chapter. Reintroduced
notations override those introduced earlier.

Notation Description
G,V,E, S Road network G = (V,E), and subset of segments

S ⊂ E that have traffic sensors installed
S, T Set of spatial contexts (S ≡ E) and temporal contexts

(e.g., time of the day), respectively
D,W,H Matrix of observed speeds and its factors, where D ≈W ×H

(W,H are the spatial and temporal cluster, respectively)
N,M,K Dimensions of D (N ×M), W (N ×K) and

H (K ×M), where N = |S| and M = |T |
Q Set of traffic speed queries: Q = {(r, t)},

where r ∈ E and t ∈ T
X Space of spatiotemporal contexts: X = S × T
Y Observed speeds in D, i.e., D = (yij)
Si, Tj Spatial and temporal cluster label (1 ≤ i, j ≤ K)
k, K(X,X) GP kernel function and covariance matrix
fu, f(u,v) Side information: node-wise (fu) and edge-wise (f(u,v))
∆, W Temporal interval and sliding window

naturally modeled using a graph data structure G = (V,E), where the set of edges E

represents the road segments and the set of nodes V represents the intersections (points)

among those segments. For many cities around the world, detailed road networks are

often made publicly available (typically as GIS shapefiles) by the city’s transportation

authorities. Moreover, these shapefiles typically contain useful information about the

road features such as speed limits, number of lanes, segment length, road type, etc.

Suppose I have a road network G and a subset S ⊂ E of road segments is installed with

some form of traffic sensors. Suppose I also have recent observations D of vehicular

travel speeds measured by those sensors at a certain temporal granularity level ∆ (i.e.,

the sampling interval) along the segments in S. Let r ∈ E be a road segment and ~vr be

the observed speed over r, which is inherently a directional quantity.

Given D and a set Q ⊆ E of querying segments, I seek to answer the questions:

1. What are the expected traffic speeds along the segments in Q not covered by traffic

sensors at the current time? I call this the spatial inference task.

2. What are the expected traffic speeds along all the segments in Q in the near

future3? I call this the temporal prediction task.

3“Near future” or “short-term” prediction is subjectively defined in this chapter as less than 10
sampling intervals.
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Figure 6.1: Framework for efficient spatiotemporal inference of traffic speed using
non-negative matrix factorization (NMF) and local Gaussian processes (GPs).

The spatial inference task arises because the spatial coverage of traffic sensors in a city’s

road network is typically sparse, which may be attributed to their high installation

and maintenance costs [18, 89]. The short-term temporal prediction task arises from

many real-world applications such as real-time vehicle routing, where new routes are

continuously being calculated in light of current and predicted traffic speed information

[65, 104]. Thus, having answers to these questions are the necessary conditions for the

solutions to many real-world problems in urban settings, where accurate and fine-grained

prediction of the city’s spatiotemporally varying traffic speed is crucial.

Table 6.1 summarizes the additional notations used in this chapter as well as their

relations. Note that reintroduced notations override those introduced in Table 3.1.

6.3 Solution Overview

I address the efficiency issues of using spatiotemporal GPs for learning and predict-

ing large-scale speed data. I draw inspiration from Tobler’s first law of geography—

“Everything is related to everything else, but near things are more related than distant

things” [98] to cluster the recently observed traffic speeds in both space and time into

“local” sets of training data. Each of those subsets corresponds to a local GP. I call such

clustering localization for short.

Let Q = {(r, t)} be a set of querying road segments at a future time t. For each segment

r ∈ Q, I just need to learn a local GP using the segments “near to” r w.r.t. the observed

speeds in order to make a good enough inference of r. Likewise, given a future time t, I
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just need to know the data points that are “related to” t (w.r.t. the speed) in order to

predict those at t. I use clustering to quantify such nearness and relatedness in space

and time. I propose to use non-negative matrix factorization (NMF) for localization

as spatiotemporal clustering is naturally obtained through factorizing the matrix of

observed speeds D. The meaning of “local” here is the subset of segments and time

points in D that are assumed to have similar speeds to (r, t).

The gain in efficiency comes from the use of a much smaller subset of training data

for each local GP. In addition, using more relevant training data could even improve

prediction as will be demonstrated. Fig. 6.1 illustrates the proposed framework for

efficient spatiotemporal inferences for big traffic data using local GPs. The framework

consists of two components: learning and prediction.

Learning. Let D = (yij) be a matrix of dimension N ×M , where yij is an observed

speed value along segment i at time discrete time step j, N = |S| is the total number

of road segments, and M = |T | is the total number of regular intervals sampled per day

by traffic sensors. The learning process consists of three steps:

Step 1 I factorize D into matrices W ∈ RN×K≥0 and H ∈ RK×M≥0 , where K � N,M .

I call K the number of spatial/temporal clusters of D. That is, I could divide

the road segments in S into K spatial clusters of similar traffic patterns through-

out T and, likewise, I could divide T into K temporal clusters of similar traffic

patterns throughout S. Thus, there are K2 such spatiotemporal clusters, each

corresponding to a local training set of a local GP.

Step 2 I normalize W row-wise. For each row wi (1 ≤ i ≤ N) of W that corresponds

to a road segment ri, I probabilistically assign ri to one of K spatial clusters using

the probability vector wi. Each ri also has a vector of spatial features fi that is

used for spatial clustering mapping.

Step 3 I normalize H column-wise. For each column hj (1 ≤ j ≤ M) of H that

corresponds to a time step tj , I probabilistically assign tj to one of K temporal

clusters using the probability vector hj . I call this step temporal cluster mapping.

Step 2 and 3 perform “soft assignment” of each road segment and time interval to their

respective cluster member. In this respect, NMF is essentially analogous to performing
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simultaneous clustering on the rows and columns of D, and probabilistically assigning

each row and column vector of D to their respective cluster member. Because the rows

of D represent the observed traffic patterns over T at specific road segments, I interpret

Step 2 as spatial clustering of road segments according to the similarities of traffic

patterns over time. Likewise, each column of D represents the observed traffic pattern

over S ⊂ S at certain time interval. Therefore, Step 3 can be interpreted as temporal

clustering of time intervals according their similarities of traffic patterns over space.

Because the same K is used for both spatial and temporal clustering, I conceptualize

such localization as binning the training data D into K ×K partitions, where each of

the partitions is a “local” set of training data that have similar traffic pattern in space

and time. This concept is illustrated in Step 1 of Fig. 6.1.

Prediction. Given a query pair (r, t) ∈ Q, where t is some future time, prediction

involves the following steps:

Step 1 I compare the spatial feature vector fr of r with each fs of s, ∀s ∈ S using

the Euclidean distance. I choose the nearest segment s∗ ∈ S to r. From Step

2 in Learning, I know which spatial cluster s∗ belongs to, here denoted as Si

(1 ≤ i ≤ K). I deterministically assign r to Si. I call this step nearest neighbor

mapping.

Step 2 Given t ∈ T , I simply look up which temporal cluster label Tj (1 ≤ j ≤ K) it

belongs to using the temporal cluster mapping (derived in Step 3 of Learning) and

deterministically assign t to Tj .

Step 3 Given the cluster labels Si and Tj of (r, t), I retrieve the corresponding local

training set (Si, Tj), train the local GP(i, j) model and make a spatiotemporal

inference for (r, t).

For convenience, I shall hereafter use the term “spatiotemporal inference” to collectively

refer to both the spatial inference (of unobserved segments) and the temporal prediction

(of future traffic speed). Each local GP(i, j) can be further extended to consider the

network structure and topology in its spatial “locality”, as well as incorporate side

information of the road segments via the its kernel function (see Section 6.5). I shall

also use the term “global GP” to refer to the GP model whose training set is sampled

uniformly at random from D without localization.
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6.4 Non-negative Matrix Factorization for Localization

6.4.1 Preliminaries

Non-negative matrix factorization (NMF) is a popular technique for decomposing data

into latent (hidden) components with physical meaning and interpretations [23, 59]. It

has been widely used in dimensionality reduction, object detection, latent clustering,

and blind source separation, involving image, text and signal data [23, 90, 95]. In this

work, I use NMF to decompose matrix D into two non-negative matrices W and H that

represent the spatial and temporal clusters of speed values in D, respectively. These

two matrices are then used for the localization of GPs during training and prediction.

NMF seeks to approximate D ∈ RN×M≥0 by a product of W ∈ RN×K≥0 and H ∈ RK×M≥0 (i.e.,

D ≈W ×H), where K is the number of clusters. Note that usually K � min(N,M).

The non-negativity constraint imposed on the two matrices serves to provide meaningful

interpretations for the spatial and temporal clusters. That is, each row of W can be

interpreted as the degrees of membership to K different spatial clusters. Likewise, each

column of H represents the degrees of membership to K different temporal clusters.

6.4.2 Optimization Objective

The quality of approximating D by W ×H can be measured through various distance

functions. In this work, I use the Frobenius norm, which leads to the optimization

problem of minimizing the loss function L:

L =
1

2
||D−WH||2F =

1

2

∑

i,j

[
Di,j −

∑

k

Wi,kHk,j

]2

(6.1)

where i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, and k ∈ {1, . . . ,K}.

To arrive at meaningful spatial and temporal clusters, I further impose sparsity con-

straints to W and H via L1-norm penalty. This yields the following regularized loss:

L =
1

2
||D−WH||2F + λ


∑

i,k

Wi,k +
∑

j,k

Hk,j




︸ ︷︷ ︸
L1-norm penalty

, (6.2)
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where λ > 0 is the regularization parameter (set to λ = 100). Enforcing sparse W

and H leads to sparse membership to different clusters, thus improving the model inter-

pretability while retaining approximation quality.

It is also worth noting that L is convex with respect to the individual matrix W or H,

but not both. As a result, one can only expect to find a stationary point of L, which

is not necessarily a globally optimal solution. I next describe a fast coordinate descent

algorithm to find a stationary solution to the optimization problem (6.2).

6.4.3 Coordinate Descent Learning

The key idea of the coordinate descent (CD) method is to update one variable at a

time, while keeping the others fixed. The efficiency of the CD procedure has been

demonstrated in several state-of-the-art machine learning methods [28, 34]. For NMF,

the conventional ways of learning W and H are largely based on the alternative non-

negative least squares (ANLS) framework [77], which converges to stationary points

provided each sub-problem can be solved exactly. However, the ANLS-based methods

usually take a significant amount of time to find an exact solution for each sub-problem.

In contrast, the CD method can efficiently compute reasonably good solution for each

sub-problem and move on to the next round [34].

Without loss of generality, I shall focus on the coordinate descent update for entries in

W; the update for entries in H can be similarly derived, i.e., by replacing D with D>

and swapping W with H>. The CD method solves each sub-problem by the following

one-variable Newton update:

Wi,k ← max

(
0,Wi,k −

(5WL)i,k
(52

WL)i,k

)
, (6.3)

where 5 and 52 denote the gradient (i.e., first derivative) and curvature (i.e., second

derivative), respectively. The truncation max(0, x) serves to ensure non-negative W.

With respect to the regularized loss (6.2), it is easy to show that the gradient 5WL
resolves to:

5WL = WHH> −DH> + λ, (6.4)
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and in turn the curvature 52
WL is:

52
WL = HH>. (6.5)

Consequently, the CD update in (6.3) can be written as:

Wi,k ← max

(
0,Wi,k −

(WHH> −DH>)i,k + λ

(HH>)i,k

)
. (6.6)

It can be seen from (6.6) that the regularization parameter λ plays a role in shifting the

new Wi,k to a smaller (possibly negative) value. As such, a larger λ would foster more

(zero) truncation and therefore result in a sparser solution.

Using the update rule (6.6), I carry out a cyclic coordinate descent. That is, I first

update all entries in W in cyclic order, and then update entries in H, and so on. With

respect to W, I traverse every cluster k, in which I update each variable Wi,k using

(6.6). The same applies to each Hk,j , with W swapped with H>. The procedure is

repeated until a maximum number of iterations (set to 200) is reached.

6.4.4 Efficiency Considerations

The aforementioned CD procedure can be carried out efficiently if certain quantities are

pre-computed. Specifically, I calculate and store the matrix products DH> and HH>

prior to entering the one-variable update loop for W. (Similarly, I pre-compute D>W

and W>W before updating H). These would incur an additional memory with an order

of O ((N +M)×K) and O
(
K2
)
, respectively. As such, the total memory complexity

of the CD procedure is O ((N +M +K)×K). This, however, is still much smaller than

the dimensionality of D (i.e., N ×M).

Meanwhile, thanks to caching, the time complexity of the CD procedure is linear with

respect to N and M . In particular, the time needed to update all entries in W within

a CD iteration is O
(
N ×K2

)
. Similarly, the time for updating H is O

(
M ×K2

)
.

Thus, the overall time complexity is thus O
(
(N +M)×K2 × Tmax

)
(where Tmax is the

maximum number of iterations). As K and Tmax are typically small, fixed values that

are independent of the problem size, I conclude that the CD procedure is efficient. I

empirically demonstrate its efficiency in Section 6.6.4.
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6.4.5 Determining K

One practical problem in applying NMF is to determine the optimal number of clus-

ters K. I use 10-fold cross validation (CV) procedure to determine K. Specifically, I

randomly split all entries yij of D into 10 mutually exclusive folds, and for each CV

iteration f , I use fold f as validation set for NMF, and the remaining (nine) folds as

training set. I determine the optimal number of clusters by choosing K that gives the

highest fraction of explained variance score [26] averaged over 10 validation sets.

For a target (speed) variable y and predicted (speed) variable ŷ, the fraction of expected

variance R2(y, ŷ) is:

R2(y, ŷ) = 1− V ar[y − ŷ]

V ar[y]
, (6.7)

where V ar[y] = E[y2]− (E[y])2 is the variance of y.

Notably, the fraction of explained variance is a popular metric commonly used to evaluate

a regression model [26]. For an optimal regression model ŷ that perfectly matches the

target variable y, the variance V ar[y− ŷ] will be zero, which in turn implies R2(y, ŷ) = 1.

On the other hand, the most näıve regression model is a constant function, which gives

V ar[y− ŷ] = V ar[y] and thus R2(y, ŷ) = 0. In this case, the prediction ŷ tells us nothing

about the target y, in the sense that ŷ does not covary with y.

6.5 Spatiotemporal Gaussian Processes for Traffic Speed

6.5.1 Preliminaries

Let S denote the space of spatial contexts (i.e., S ≡ E in this chapter) and T denote

the space of temporal contexts (e.g., information about time of the day). I model the

speed over road segment r ∈ E under varying t ∈ T via the function f : S × T 7→ R≥0

that outputs a non-negative speed value for a given (r, t) pair.

I define a spacetime process as a stochastic process indexed by road segments r ∈ S and

temporal labels t ∈ T :

{f(r, t) : r ∈ S, t ∈ T }. (6.8)
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Thus, for a fixed spacetime location (r, t), f(r, t) is a random variable. It is a fundamental

nature of spatiotemporal data that observations at nearby locations in space and time

are similar [83]. I need a mathematical model to quantify the extent to which things

are related over space and time. Kernel functions provide such an elegant model. For

example, given two spacetime locations (r, t) and (r′, t′), the radial basis function (RBF)

kernel has the following form:

k((r, t), (r′, t′)) = e−‖(r,t)−(r′,t′)‖/l2 . (6.9)

A spatiotemporal Gaussian process (GP) is a stochastic process over an index set X =

S × T . It is entirely defined by a mean function µ : X 7→ R≥0 and a covariance (kernel)

function k : X ×X 7→ R. These two functions are chosen such that they jointly define

a multivariate normal distribution whenever I draw f |X from a GP(µ, k) on a finite set

of spacetime locations X = {x1, . . . , xT }:

f |X ∼ N (µ(X),K(X,X)), (6.10)

where µ(X)i = µ(xi) and [K(X,X)]ij = k(xi, xj).

By this construction, µ(X) is a T -dimensional non-negative vector and K(X,X) ∈
RT×T is a positive semidefinite covariance matrix. I now assume that f is sampled

probabilistically from a GP prior f ∼ P (f) [83]. A GP prior is fully specified by its

mean function:

µ(r, t) = E[f(r, t)],

its covariance (or kernel) function:

k((r, t), (r′, t′)) = E[(f(r, t)− µ(r, t))(f(r′, t′)− µ(r′, t′))]

= Cov((r, t), (r′, t′)),

and observation noise with variance σ2.

A major computational benefit of GPs is that the posterior can be computed in a

closed form. Suppose I have collected recent speed observations Y = [y1, . . . , yT ]> at

X = [(r1, t1), . . . , (rT , tT )]. I can write the posterior distribution of f given X and Y
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also as a GP with mean:

µY,X(r, t) = µ(r, t) + k̂X(r, t)>(K̂Y,X + σ2I)−1(δY)> (6.11)

and covariance kY,X((r, t), (r′, t′)) =

k((r, t), (r′, t′))− k̂X(r, t)>(K̂X + σ2I)−1k̂X(r′, t′), (6.12)

where δY is the deviation of Y from its prior mean:

δY = [y1 − µ(r1, t1), . . . , yT − µ(rT , tT )]>,

k̂X(r, t) is a column vector of the kernel values between (r, t) and each observed location

in X:

k̂X(r, t) = [k((r1, t1), (r, t)), . . . , k((rT , tT ), (r, t))]> ∈ RT ,

and K̂X is the Gram matrix of all locations in X:

K̂X = [k((ri, ti), (rj , tj))]i,j∈[1,...,T ] ∈ RT×T .

The posterior variance of f(r, t) is kY,X((r, t), (r, t)).

Inference of continuous values with GP prior is known as GP regression (or kriging).

When concerned with a general GP regression, it is assumed that for a GP f observed

at location (r, t), f(r, t)|Θ is just one sample from the multivariate normal distribu-

tion of dimension |X|, where Θ is the set of hyper-parameters of the kernel function

k((r, t), (r′, t′)). Thanks to its non-parametric nature, training a GP reduces to esti-

mating Θ via the marginal likelihood function. Having identifying Θ, spatiotemporal

inference f(r′, t′) becomes a matter of sampling from the posterior distribution. A major

computational bottleneck of GP is its O(|X|3) time complexity, which makes it imprac-

tical for large-scale spatiotemporal data [20, 67, 83].

6.5.2 Kernel Functions for Road Networks

Let G = (V,E) be a directed graph representing a road network. G is directed be-

cause traffic on a road segment could possibly be one-way. On two-way segments, the

corresponding links of G become bidirectional. Let Y = {y(u,v) : (u, v) ∈ E} be the
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speed values that I wish to model. An important nature of networks is that Y are

highly correlated on known node and edge features. Following Yu and Chu [105], let

f : V ×V 7→ R≥0 be a GP(µ, k), then the kernel function between (u, v) and (u′, v′) can

be written as:

k((u, v), (u′, v′)) = k(u, u′)k(v, v′), (6.13)

where k : V × V 7→ R is some kernel function between the nodes. Since a random

function f drawn from GP(µ, k) is generally asymmetric, i.e., f(u, v) 6= f(v, u), traffic

directions along the links in G are automatically modeled.

Let u, v ∈ V be identified by their respective pair of longitude and latitude coordinates

(ux, uy) and (vx, vy), then equation (6.13) becomes:

k((u, v), (u′, v′))

= k((ux, uy), (u
′
x, u
′
y))k((vx, vy), (v

′
x, v
′
y)).

(6.14)

For spatiotemporal data, a natural way to formulate a spacetime kernel is to multiply

the spatial kernel ks and the temporal kernel kt together. This feature is referred to as

separable kernel of GPs [67, 83]. Let r = (u, v), r′ = (u′, v′) ∈ E and t be a time label,

from (6.14), I have:

k((r, t), (r′, t′))

= ks((ux, uy), (u
′
x, u
′
y))ks((vx, vy), (v

′
x, v
′
y))kt(t, t

′).
(6.15)

6.5.3 Incorporating Side Information

I define side information as any spatial features of the nodes and edges of G other than

the longitude and latitude coordinates of the nodes of G, which precisely specify the

geolocation of a given edge (u, v) and quantify its geospatial nearness to another edge

(u′, v′). Therefore, side information could be any other spatial features of the nodes

and edges of G that can be derived from the given GIS shapefile of the road network. I

then classify side information into two types: node-wise and edge-wise side information,

where node-wise side information contains the spatial features of the nodes of G and

edge-wise side information contains the spatial features of the edges of G.
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For each road segment r = (u, v), let fu and fv denote the vectors of node-wise side

information of r, which are necessarily of the same length. Likewise, let f(u,v) denote

the vector of edge-wise side information of r. The set of all side information of r is

denoted as fr = (fu; fv; f(u,v)). I take advantage of the additive kernel feature of GPs

[27] to incorporate side information into the kernel function. Following (7.1), the kernel

function between (r, t) and (r′, t′) knowing their side information fr and fr′ is given by:

k((r, t, fr), (r
′, t′, fr′))

= k((r, t), (r′, t′)) +
∑

i

k(f (i)
u , f

(i)
u′ )k(f (i)

v , f
(i)
v′ )

+
∑

j

k(f
(j)
(u,v), f

(j)
(u′,v′)),

(6.16)

where i and j are the indices of the set of node-wise and edge-wise side information,

respectively.

6.5.4 Complexity of Local GPs

For each local GP(i, j), without incorporating side information, the time complexity is

O(|Xij |3) = O(|Si|3 × |T |3j ). The original sizes of S ⊂ E and the space of temporal

contexts T from matrix D are N and M , respectively. Due to clustering, each local

training set (Si, Tj) has E[|Si|] = N/K and E[|Ti|] = M/K training data points on

expectation. Thus, the expected time complexity of each local GP(i, j) is O((NM
K2 )3). If

the prediction phase in Fig. 6.1 can be done in parallel for each spatiotemporal cluster

(Si, Tj), then O((NM
K2 )3) is the expected time complexity to predict an arbitrary set of

queries Q = {(r, t)}. Otherwise, if it is done serially, then the worst-case time complexity

is K2O((NM
K2 )3) = O(K2(NM

K2 )3) = O( (NM)3

K4 ), which is still a significant improvement

over the original O((NM)3) time complexity of global GPs without side information.

For GPs with side information, the total time complexity is added by the complexity of

the kernel function of each “piece” of side information, each having complexity of O(N3)

and O(( N
K2 )3) for global and local GPs, respectively. I will empirically demonstrate

in the next section the effects of having side information on the “wall-clock” runtime

performances of both local and global GPs.
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6.6 Experiments

6.6.1 Datasets

TMC (Traffic Message Channel) is a technology used to broadcast traffic information in

real-time to vehicles through the radio waves. TMC allows for silent delivery of dynamic

traffic information, and is often integrated directly into the vehicle’s navigation system

for real-time estimation of speed and route calculation. I have acquired, through a

commercial vendor of navigation systems, rich TMC datasets that record the average

speeds along certain road segments in the cities of Pittsburgh, Pennsylvania (P.A.),

and Washington, D.C. My TMC datasets cover a total of 1, 190 and 1, 091 unique road

segments in the city’s road network of Pittsburgh and Washington, respectively. Each

record is an average speed measurement over a road segment every 5-minute interval

(i.e., ∆ = 5 minutes) everyday for the whole month4 of August, 2014. Each speed value

also has a direction indicator (e.g., northbound, southbound, eastbound or westbound).

Thus, my dataset is a close approximation to the city’s traffic sensor network.

TMC technology fuses real-time traffic information from crowd-sourced networks of

“floating cars” and mobile devices with public sources of information (e.g., from histori-

cal data). Under normal conditions, when no incidents are reported from crowd-sourced

devices, TMC data capture publicly available sources of traffic information. Under ir-

regular conditions, such as traffic incidents or congestion, crowd-sourced information is

collected and broadcast to alert drivers in real-time. Still, TMC data can be missing for

certain road segments when routing services are not usually called for. This happens

typically in the late night or early morning hours. Hence, my data are temporally sparse

for each road segment, i.e., there are many missing values in the temporal dimension.

I downloaded the shapefiles5 representing the two cities’ road networks and constructed

a connected directed graph G = (V,E) for each. My datasets cover approximately 5%

and 8% of the city’s road network for Pittsburgh and Washington, respectively. I extract

useful spatial features of the road segments in G from the retrieved shapefiles and the

network structure of G. Table 6.2 summarizes those spatial features. The table also

shows two network centrality measures of G: (node) degree and (edge) betweenness.

4Traffic pattern typically remains the same during a season [81], which justifies my choice of data.
5The shapefile of Pittsburgh’s road network can be downloaded from:

http://pittsburghpa.gov/dcp/gis/gis-data-new, and Washington’s from: http://opendata.dc.gov.

http://pittsburghpa.gov/dcp/gis/gis-data-new
http://opendata.dc.gov
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Figure 6.2: Speed distribution along road segments covered by my TMC dataset in
downtown Pittsburgh on a typical weekday in August, 2014 at 8 a.m.

Table 6.2: The extracted features f of the road segments in Pittsburgh & Washington.

Feature Description
Longitude, latitude Longitude and latitude coordinates of the two endpoints (nodes) of a segment.

Segment length Length (in miles) of a segment.
Number of lanes The number of lanes a segment has in each direction.

Direction Direction of a segment: northbound, southbound, eastbound, or westbound.
Degree Degree of two end nodes of an edge (segment).

Betweenness Edge betweenness centrality of a segment.
One-way Is this segment one-way?

Road type One of the 10 defined types: avenue, boulevard, bridge, lane, place, ramp, road, street, tunnel, and way.

Node degree is the (all) degree of a node in the directed network. Edge betweenness is

the number of shortest paths from all pairs of nodes in the network that pass through a

given edge [13]. Network centralities have been shown to greatly influence on the flow

of information and traffic through diverse networked settings [13, 42, 58].

Fig. 6.2 visualizes the speed distribution over the road segments covered by my TMC

data in downtown Pittsburgh on a typical weekday. Speed value along a segment is

averaged over observations on all the weekdays in the month at 8 a.m. The figure shows

smaller segments in the downtown area tend to have lower speeds during the morning

commute. Whereas, larger segments are observed with higher speeds and faster flows.

Fig. 6.3 shows the time series of the average speed on all observed road segments in

Pittsburgh during all the weekdays and weekends in the month. The figure clearly

shows that traffic speed on the weekend is, on average, faster and less variable than that

on the weekday. It also shows the rush hours effects on the weekday: average speed

dips around 8 a.m. (morning rush hour) and 5 p.m. (evening rush hour) when people

commute to work and go home, respectively. The traffic between those two rush hours
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Figure 6.3: Time series of the daily average speed along road segments in Pittsburgh
every 5-minute interval in August, 2014.

Figure 6.4: The “sliding window” experimental design: t ∈ {0, 1, . . . , 22, 23} on the
test day, t+ i (1 ≤ i ≤ 6) denotes the test time. W is the length of the sliding window:
5 days for weekday and 3 days for weekend. Dt denotes the training data containing
the features Xt and the observed speeds Yt in Dt averaged over 24-hour periods in W .

is generally much slower than in the late evening and early morning. On the weekend,

by contrast, traffic is generally slower during the day when people tend to go out. The

data of Washington, D.C., exhibit very similar patterns.

6.6.2 Experimental Design

Following the observations in Fig. 6.3 and the established procedures in modeling human

mobility patterns in urban areas [29, 46, 104, 110], I split the data of each city into two

sets: weekday (Monday through Friday) and weekend (Saturday and Sunday). I design
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the following experiments to measure the performances of my local GP models in diverse

spatiotemporal settings using both sets.

For each city, I designate Thursday, August 28, 2014 and Sunday, August 31, 2014

as the test weekday and weekend, respectively. I choose Thursday as a test weekday

as previous studies have suggested the inherent differences in urban mobility patterns

between Friday and the rest of the weekdays [29, 46, 81]. I call either date the test day.

For each hour t ∈ {0, 1, . . . , 22, 23} on each test day, I designate the test time to be 1–6

intervals ahead of t, i.e., test time is t + i × ∆, where ∆ = 5 minutes and 1 ≤ i ≤ 6.

There are 24 trials per test day, where each trial predicts 6 test cases. I call each test

case an i-step ahead prediction and simply denote the test time as t+ i.

I adopt the “sliding window” method proposed in [104] to collect the training data for

each trial t, denoted as Dt. Given a test time t+ i, Dt is the observations collected from

time t−W up to (and including) t, where W is the length of the window of observations.

For weekday, W is a period of exactly 5 previous weekdays, i.e., W = 5 × 24 × 12 =

1, 440 intervals. For weekend, W is a period of exactly 3 previous weekend days, i.e.,

W = 3 × 24 × 12 = 864 intervals. I choose such W for both sets in order to avoid the

“cold start” problem6 in matrix factorization [59] due to the temporal sparsity problem

of my data. For each trial, Dt is the observed speeds averaged over the days in W .

To evaluate the spatiotemporal inferences of my models, I randomly select 40% of the

segments out of the total number of segments as the training set and test on all the

segments. Hence, each Dt is a (476 × 288)- and (436 × 288)-dimensional matrix for

Pittsburgh and Washington, respectively. Fig. 6.4 illustrates my experimental design.

The following models are considered in my experiments to evaluate the effectiveness of

side information, the efficiency of local GPs and the efficacy of NMF-based localization

(as opposed to a naive grid-based approach):

1. GP – global GP without side information;

2. GP+ – global GP with side information;

3. LGP – NMF-based local GP without side information;

6The cold start problem invalidates the factorization of D if there exists either an entire row of column
of D that admits all missing values.
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Table 6.3: Models evaluated in the experiments. X means ‘Yes’; blank means ‘No’.

Model Baseline NMF-based Side Info Grid-based
GP X

GP+ X X

LGP X

LGP+ X X

LGR X X

LGR+ X X X

4. LGP+ – NMF-based local GP with side information;

5. LGR – grid-based local GP without side information;

6. LGR+ – grid-based local GP with side information.

All the above models implement spatiotemporal GPs defined on road networks (as de-

scribed in Section 6.5.2) and use the RBF kernel functions. I use a global GP (with

or without side information) as the baseline for each NMF-based local GP counterpart.

For each global GP, exactly Tmax = 600 observations sampled uniformly at random

from Dt are used as its training set. I heuristically choose such value of Tmax based

on the observed tradeoff between training time and prediction error. That is, too large

Tmax would induce impractically long training time for real-time purposes, whereas too

small Tmax would unacceptably increase the prediction error rate of global GPs (i.e., the

under-fitting problem). The training set for each local GP consists of min{Tmax, |Sl|}
observations sampled uniformly at random from the corresponding local subset Sl in-

duced by the localization of Dt. This is to ensure fairness when comparing prediction

accuracies and runtime performances between global GPs and their local counterparts.

I also include two grid-based local GPs whose localizations are based on partitioning

each city’s road network into uniform spatial grids. Each local GP is learned only from

the data points belonging to a given grid cell. I then compare each grid-based local GP

with its NMF-based counterpart. I set the number of grids (for the grid-based local

GPs) as K2, i.e., the same number of clusters used by the NMF-based local GPs.

Table 6.3 summarizes all the six models evaluated in my experiments. All the spatial

features listed in Table 6.2 are used as side information, except for longitude and lati-

tude coordinates, which are used to define the spatiotemporal kernel function. Linear

kernel functions are used for categorical variables (direction, one-way, and road type);

otherwise, RBF kernels are used.
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6.6.3 Evaluation

I use the root mean square error (RMSE), the mean absolute error (MAE), and the

mean absolute percentage error (MAPE) to evaluate the models. The three metrics are

respectively defined as:

RMSE =

√√√√ 1

N

N∑

i=1

(ŷi − yi)2, (6.17)

MAE =
1

N

N∑

i=1

|ŷi − yi|, (6.18)

MAPE =
1

N

N∑

i=1

∣∣∣∣
ŷi − yi
yi

∣∣∣∣ , (6.19)

where ŷi and yi are the predicted and observed speed over road segment i, respectively,

and N is the total number of road segments in the test set.

I also measure the runtime performances by looking at the “wall-clock time” (in seconds)

for each model to train and make predictions at test time. This includes, whenever

possible, matrix factorization, temporal cluster mapping, nearest neighbor mapping,

and training and prediction time for each GP model. All the experiments were run on a

CentOS Linux machine with 7-core Intel(R) Xeon 2.6 GHz processor and 70 GB RAM.

To evaluate the significance of the improvements due to local GPs, I use the non-

parametric Wilcoxon signed-rank statistical test [102], which provides a robust alter-

native to the pairwise t-test when the measures cannot be assumed to be normally

distributed.

6.6.4 Localization

Following the procedure described in Section 6.4.5, I find the optimal number of clusters

K∗ by taking K that gives the highest explained variance R2. To this end, I perform

10-fold CV with K varying from 1 to 10, and then look for the “elbow” point that

corresponds to the highest R2 averaged over 10 folds. Fig. 6.5 shows the results. I

see that the optimal K∗ (i.e., the “elbow”) for Pittsburgh are 5 for weekday and 2

for weekend. The optimal K∗ for Washington are 3 for weekday and 2 for weekend.
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Figure 6.5: Results of parameter search procedure for determining K for each dataset.

The higher K∗ for weekday suggests that the traffic patterns on the weekday are more

complex than those on the weekend.

To verify the convergence of the CD algorithm, I also monitor the residual error ||D −
WH||2 (i.e., the first term in equation (6.2)) over different training iterations. Fig. 6.6

shows the convergence plots of ||D−WH||2 for different datasets. Here, I zoom into the

first 30 training iterations (out of a total of 200 iterations as per Section 6.4.3) in order

to see more clearly the convergence of ||D −WH||2. Indeed, ||D −WH||2 converges

rapidly within 10 iterations and no longer decreases substantially afterwards. This shows

that the CD algorithm offers an efficient method for training NMF.

Fig. 6.7 illustrates the time series of the average speed along the clusters of road segments

every 5-minute interval on a typical weekday in Pittsburgh. My NMF method has

clustered the road segments into different types, each having different throughput and

daily speed distribution. For example, for clusters 2, 3, and 4, I can see clearly the rush

hour effects observed earlier in Fig. 6.3 to different levels. These clusters mostly contain

road segments leading to (and away from) the business areas in the downtown. The

other clusters with slower speeds contain mostly small segments in the residential areas,

or those that are in the business areas but do not lead to the residential areas.

Fig. 6.8 presents a heatmap visualization of the temporal cluster mapping derived from

the column-wise normalized matrix H on a typical weekday in Pittsburgh. The result

shows clear temporal patterns of the traffic speed in the city, whereby the probabilistic
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Figure 6.6: Convergence of the coordinate-descent training in NMF using the best
number of clusters K∗ for each dataset.

Figure 6.7: Time series of the average speed along clustered road segments for week-
day data in Pittsburgh. Horizontal axis shows the 5-minute intervals.

Figure 6.8: Heat map of the column-wise normalized matrix H visualizing the tem-
poral clustering for weekday in Pittsburgh. Bolder shades → 1 and lighter → 0.
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Table 6.4: Runtime statistics (in seconds) of NMF-based localization for Pittsburgh
(PGH) and Washington (WAS) on weekday (WD) and weekend (WE).

City (day) Mean Median Stdev
PGH (WD) 0.3137 0.2676 0.1243
PGH (WE) 0.1889 0.1621 0.1043
WAS (WD) 0.2597 0.2050 0.1071
WAS (WE) 0.1395 0.1146 0.0490

assignment of the temporal clusters is sparse. That is, at a given time step, only a few

clusters (darker shades) have substantially higher probability value than the rest (lighter

shades). In this case, I can identify rush hours by looking at rapidly changing cluster

assignments that occur within a fairly short period of time.

Also, because of the temporal sparsity problem mentioned in Section 6.6.1, each Dt of

each dataset has a significant number of missing values. NMF solves this problem by

imputing those missing values while imposing non-negativity and sparsity constraints.

6.6.5 Results

Table 6.4 shows the summary statistics of the NMF-based localization runtime. I can

see that, on average, NMF-based localization is sufficiently fast for most real-time ap-

plications (much less than 1 second) for all datasets.

Fig. 6.9 shows the prediction evaluation results of the six GP models listed in Table 6.3

for both Pittsburgh (PGH) and Washington (WAS) across the three evaluation metrics

(MAE, MAPE, and RMSE) averaged over all the trials on both test weekday (WD) and

weekend (WE). For Pittsburgh (top), it can be seen that global GPs without side infor-

mation always have the highest error rates. Grid-based local GPs perform better than

global GPs; however, the predictions with the lowest errors come from NMF-based local

GPs. Having side information always improve prediction accuracies with weekdays hav-

ing stronger effects than weekends. Side information has the strongest effects on global

GPs, which is not surprising given its largely diffuse training set. All the three metrics

display consistent observations with MAPE having the highest variance. My pairwise

Wilcoxon tests between global GPs and NMF-based local GPs (with/without side in-

formation) and between NMF-based local GPs and grid-based local GPs (with/without

side information) are all significant at the 5% level, except for LGP+ and LGR+ for

weekday data evaluated using MAPE. It can be argued that NMF-based local GPs with
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Figure 6.9: Evaluation of speed prediction across the 6 models using the metrics:
MAE, MAPE, and RMSE. Datasets evaluated are: Pittsburgh (PGH) and Washington

(WAS) on weekday (WD) and weekend (WE).

Figure 6.10: Evaluation of the runtime performances across 6 models for the cities of
Pittsburgh (PGH) and Washington (WAS) on weekday (WD) and weekend (WE).

side information is the best-performing model overall. This demonstrates the effects of

learning from a smaller, but more relevant local subsets of training data [92].

For Washington, similar observations can be seen in Fig 6.9 (bottom). Global GPs

without side information almost always have the highest error rates. Grid-based local

GPs yield high variances and, at the same time, perform much worse than those in
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Pittsburgh (when compared to global GPs). This showcases the inability of simple spa-

tial grid partitioning to adequately model more complex traffic patterns in a completely

different urban setting. Having side information invariably reduces error rates for all

the models. Similar pairwise Wilcoxon tests were performed, all of which are significant

at the 5% level, except for the three pairs: GP vs. LGP, GP+ vs. LGP+, and LGP+

vs. LGR+ for weekend data evaluated using MAPE due to high variances. It can thus

be concluded that NMF-based local GPs with side information is the best-performing

model for weekday data. It is, however, inconclusive for weekend data.

Fig. 6.10 shows the evaluation of runtime performances for all the models. For Pitts-

burgh (top), NMF-based local GPs significantly outperform global GPs by more than

10 folds (i.e., NMF-based local GPs are more than 10 times faster) for weekday, with

and without side information. Higher K∗ significantly reduces the runtime of local GPs

as evidenced by shorter runtime on the weekday compared to that on the weekend.

Apart from that, I see a similar pattern for weekend: both local GPs significantly out-

perform global GPs in terms of runtime, and NMF-based local GPs are more than 6

times faster. Having side information invariably improves prediction accuracies, but

also increases runtime for all models. This is particularly true for grid-based local GPs,

which suggests that the chosen set of side information induces more complex correlation

structure (hence, parameter estimates) for GP learning . All Wilcoxon pairwise tests

are statistically significant at the 5% level.

For Washington, Fig. 6.10 (bottom) shows similar observations: local GPs are faster

than global GPs and having side information increases runtimes. What is interesting,

however, is the observations that NMF-based local GPs with side information have

significantly higher runtimes than grid-based local GPs. This might be due to the need

of LGP+to model more complex local subsets that results from non-uniform partitioning

of training data than LGR+. I further discuss this observation in the following section.

All Wilcoxon pairwise tests are significant at the 5% level.

6.6.6 Discussion

For all datasets, global GPs incur high runtimes and have low prediction accuracies,

which render them impractical for real-time applications. Local GPs thus become viable

solutions to real-time traffic prediction with significantly lower runtime costs, with and
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Figure 6.11: Visualization of the spatiotemporal inference of traffic speed in Pitts-
burgh on the test weekday (August 28, 2014) using LGP+. Training data obtained using
the sliding window method from 5% of the road network and at three time points: 8

a.m., 2 p.m., and 8 p.m. Test time for each is a 3-step ahead prediction.

without side information. Local GPs with side information can give more accurate

predictions but at increased time costs, and thus are more suitable for longer-horizon

applications. On the other hand, local GPs without side information are more suitable

for shorter-horizon applications, where decisions are to be made fast.

In most cases, NMF-based local GPs predict significantly better than grid-based local

GPs, as shown in Fig. 6.9. I have also seen that, for the same set of side information

features, different localization methods can result in significantly different runtimes for

training local GPs. This is due to my uniform (and uninformed) selection of the same

set of side information listed in Table 6.2 for both cities. Different cities induce differ-

ent traffic phenomena and optimization problems. It is unreasonable that the same set

of side information is able to model those distinct phenomena equally effectively. Dis-

criminatory feature selection should have been exercised. Feature selection is an entire

different issue and often relies on domain knowledge and is out of scope of this work.

In practice, one needs to trade off between model expressiveness (i.e., side information)

and efficiency depending on one’s sensitivity to accuracy and time. How to select side

information also matters. In this respect, it is important to consider the most relevant

side information (and the smallest subset of such) to the phenomenon being modeled in

order to maximize its benefits. Such knowledge also belongs to the domain expert.
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Fig. 6.11 visualizes the spatiotemporal inferences of traffic speed on the entire road

network of Pittsburgh (zoomed into the downtown area) on the test weekday at three test

times: 8:15 a.m., 2:15 p.m., and 8:15 p.m. NMF-based local GPs with side information

were used to make the inferences. The training sets were derived using the sliding window

method at time t ∈ {8, 14, 20} hours. Each test time is a 3-step ahead prediction. At

each test time, the observed speeds cover 5% of the whole network (while prediction

makes for the entire of it). Fig. 6.11 shows clearly the morning rush hour effect at 8:15

a.m., where the main roads leading to the downtown and other business areas become

highly congested (with lower speed distribution). At 2:15 p.m., congestion becomes

more localized to the business areas because of office hours, while the main roads have

become visibly more cleared of traffic. At 8:15 p.m., traffic on the whole gets visibly

faster with main roads leading to and from the business areas having apparently much

faster flows, and congested areas have now become more localized to the nightlife areas.

6.7 Conclusion

This chapter addresses an important and typical problem in urban computing: real-time

traffic speed modeling and prediction. To this end, I propose the novel idea of local-

izing spatiotemporal Gaussian processes (GPs) using non-negative matrix factorization

(NMF). In addition, I make use of the expressiveness of GP kernel functions to model

traffic speed through directed links of a road network and incorporate side information

via additive kernel. Extensive empirical studies using real-world traffic data collected

in diverse geospatial settings have demonstrated the efficacy of my proposed approach,

in terms of both computational efficiency and prediction accuracy, against the baseline

global and local GPs. I also show that a tradeoff exists between model expressiveness

and runtime performance when side information is taken into account. It is therefore

important to consider the most relevant side information for that matter.



Chapter 7

Incident Prediction for Law

Enforcement Resource

Optimization

7.1 Introduction

In today’s world of heightened security concerns, there is an ever increasing pressure

on law enforcement agencies around the world to efficiently deploy resources and timely

respond to emergent incidents. Such pressure is further aggravated by the urbanization

trend across the world [41], resulting in manpower crunches on law enforcement agencies

trying to meet the rising demand in large and densely populated urban areas.

With the availability of spatiotemporal data that provides fine-grained details of the

incidents (e.g., precise time and location of occurrence, as well as the police response to

the incidents), it is now possible to make high-precision predictions of future occurrences

of the incidents using advanced machine learning models. Applications of such capabil-

ities include predictive policing and adaptive patrolling [80]. Furthermore, such models

should be able to incorporate the rich set of socioeconomic and geopolitical features un-

derlying those incidents to learn and generate the distributions of incidents under diverse

what-if scenarios. This proves indispensable to an effective design of any data-driven

staffing models for the allocation of law enforcement resources. I call such problem

the “resource planning model” for law enforcement, which is introduced in Appendix A.

97



Chapter 7. Incident Prediction for Law Enforcement Resource Optimization 98

Briefly speaking, the problem calls for an optimal allocation of law enforcement resources

over space and time that satisfies a certain quality of service (QoS) constraint.

This chapter tackles the incident prediction problem, which is to predict the number of

incidents of a given type1 that would occur at a query location and time. The main mo-

tivation is to test the robustness of the resource planning model (described in Appendix

A) in face of uncertainties (i.e., randomness of the spatiotemporal process underlying

the incidents) and changes in policy (e.g., merging of base locations’ boundaries due to

reduced resource requirements). I look at the incidents from a distributional point of

view, where I discretize the continuous space into grid squares and the continuous time

into intervals. I then count the number of incidents that occurred within each discrete

grid square and time interval. I finally use the spatiotemporal Gaussian process (GP)

introduced in the previous chapter to model and predict such count variables. Thus, the

main technical challenge here is the incorporation of non-spatiotemporal features (i.e.,

“side information”) into the GP kernel function for incident generation [30].

7.2 Problem Statement

Suppose the city’s map can be divided into finite grid squares and, similarly, the con-

tinuous timeline can be hashed into finite intervals, my goal is to model the number

of incidents that occurs within each grid and at each interval. That is, let |S| denote

the number of spatial grids and |T | the number of temporal intervals. For each type of

incident, I wish to have a distribution of the count within each combination of |S| × |T |.
I call each of such combinations a “bin” as the process of discretizing the spatial and

temporal dimensions is essentially spatiotemporal data binning. In other words, given a

query tuple (x, y, t), where x, y and t represent the longitude, latitude and timestamp,

respectively, I first need to hash it into a bin i that has features fi. Let (xi, yi) denote the

centroid coordinates of the bin and ti the interval index. Given the tuple (xi, yi, ti, fi),

I then wish to predict (or generate) the number of incidents that happens in i. For

simplicity, within each bin, the incidents are assumed to have uniform distribution and

the granularity of such spatiotemporal binning is a given parameter.

1Each corresponds to a certain urgency class.
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Table 7.1: Summary of additional notations used in this chapter.

Notation Description
S, |S| Spatial dimension and number of spatial grids, respectively
T, |T | Temporal dimension and number of time intervals, respectively
δ, τ Parameters specifying the granularity of the spatial and temporal dimension
x, y, t Longitude, latitude and timestamp, respectively
xi, yi, ti Centroid coordinates of bin i and interval index, respectively
fi Feature vector of bin i

Figure 7.1: The Gaussian process (GP) framework for incident prediction.

Table 7.1 summarizes the additional notations used in this chapter. It is worth em-

phasizing that the problem discussed and the solution proposed in this chapter do not

consider complex factors such as demographic, socio-economic and socio-political fea-

tures that could have shaped the macro-trend of crime patterns over the longer-term

periods (e.g., years). I’d rather look at crimes (and its incidents) as discrete events that

could be predicted purely based on the correlations between spatiotemporal and geo-

political features (e.g., division and sector boundaries) in the short-term periods. The

distribution of such events is expected to fluctuate in the shorter window of prediction

(e.g., days, weeks), but no long-term trend could be predicted or should be inferred from

there. Such a complex problem is outside the scope of this thesis.

7.3 Spatiotemporal GP for Incident Prediction

Using the “count” as a response variable, I model the incident generation within each

bin as a spatiotemporal process. To this end, I make use of the spatiotemporal Gaussian

process (GP) introduced earlier in Section 6.5. Section 7.3.1 introduces the GP frame-

work used for incident prediction, and Section 7.3.2 describes the special kernel function

designed for the proposed GP model that incorporates side information.



Chapter 7. Incident Prediction for Law Enforcement Resource Optimization 100

7.3.1 Solution Framework

Fig. 7.1 illustrates the proposed GP framework for incident prediction. Like all other

frameworks in this thesis, it consists of a training and a test phase. Let δ and τ (0 <

δ, τ < 1) be the input parameters specifying the granularity of the spatial grid and time

interval, respectively, the training phase consists of the following steps:

Step 1 The spatial dimension S is discretized into uniform grid squares using the pa-

rameter δ, which specifies the number of spatial divisions (i.e., rows/columns) per

axis. Assuming each axis is of unit length, the number of divisions is 1
δ each;

Step 2 Likewise, the temporal dimension T is discretized into intervals using the pa-

rameter τ . Each incident is then binned into one of the |S| × |T | = 1
δ2τ

bins, and I

count the number of incidents in each bin. I treat such count as a response variable

coupled with the feature vector f2 of the bin as “side information”;

Step 3 Finally, I use a spatiotemporal GP to learn the distribution of the incidents over

space and time taking into account their side information f . To this end, I use the

centroid coordinates (longitude and latitude) of the square grids to represent the

spatial features of the random variables.

In the test phase, my goal is to predict the number of incidents that occur within a

square grid and during a certain time interval. Given a query tuple (x, y, t), I first hash

it into bin i to produce (xi, yi, ti). I call this “bin mapping”. Let fi be the feature vector

(i.e., side information) of bin i, given the tuple (xi, yi, ti, fi), I then simply perform a GP

regression (refer to Section 6.5.1) on the learned model in the training phase to compute

both the expected number of incidents and its variance.

The main difference between this GP framework for incident prediction and the GP

framework for traffic speed prediction discussed in the previous chapter is that, in this

solution, the incidents are predicted in an “offline” manner. That is, the model is trained

and its parameters are stored (on disk, e.g.) first and then when an inference query is

made, the corresponding model parameters are retrieved to make prediction. This is in

contrast to the previous GP model where (local) training data are retrieved right after

the inference query is made and which is used to trained a local GP model on the fly in

order to make prediction in real-time – that is, in an “online” fashion.

2E.g., artificial boundaries such as base locations or peak/off-peak hours classification.
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Table 7.2: Features used to learn the GP model for incident prediction.

Feature Description
location Longitude and latitude coordinates of the incident
hours The integer hours of the incident’s occurrence time (0–23)
is weekend Binary variable whether the incident occurs on the weekend
neighborhood Categorical variable specifying the incident’s neighborhood
sector Categorical variable specifying the incident’s sector

7.3.2 Kernel Function for Incident Distribution

Let i and j be two separate spatiotemporal “bins”, according to Section 6.5.2, the kernel

function between i and j can be written as:

k((xi, yi, ti), (xj , yj , tj)) = ks((xi, yi), (xj , yj))kt(ti, tj), (7.1)

where ks and kt are the spatial and temporal kernel function, respectively.

I can further incorporation side information f using the additive kernel feature [27]:

k((xi, yi, ti, fi), (xj , xj , tj , fj))

= k((xi, yi, ti), (xj , yj , tj)) +
∑

f

k(fi, fj),
(7.2)

∀ feature f ∈ f . A typical kernel function for the side information is the linear kernel.

7.4 Experiments

7.4.1 Dataset

Refer to Sect. 3.2.3 for the dataset description.

For the experiments described in this chapter, I only use the incidents occurred in the

last 12 weeks of the period. Table 7.2 summarizes the features of the incidents used

for learning the model. These features are selected based on regression analysis3, which

is not discussed here to save space. Non-binary categorical features are modeled using

one-hot encoding (i.e., transforming them into binary dummy variables). It is not hard

to see that is weekend, neighborhood and sector are the side information.

3Choosing those significant at the 5% level.
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Figure 7.2: Experimental design to validate the GP framework for incident prediction.
n is the number of weeks (n = 12 in my experiments).

7.4.2 Experimental Design

For simplicity, I classify the incidents into two types: urgent and non-urgent, based on

its given priority class. By definition, urgent incidents have higher urgency class than

non-urgent ones, i.e., they have shorter maximum response time threshold. I then model

two subsets of data separately: (1) urgent incidents only, and (2) both urgent and non-

urgent incidents (i.e., all the incidents). About 1
3 of all the incidents are urgent. For

each subset, I design the following experiment to evaluate the model.

Because of the time series nature of the incidents, I adopt the “sliding window” approach

to sequential cross-validation by alternating between training and testing on a weekly

basis for each of the 12 weeks. That is, let w (1 ≤ w < 12) be a week during the period,

then all the incidents occur in w (and in w only) are used for training, and all those in

w+ 1 are used for testing. In the next cycle, w+ 1 becomes the training week (without

considering the data in w or before), and w + 2 is the test week. This process repeats

until the last week of the 12 is the test week. Each training week only learns from the

data of the true distribution (and not the generated incidents). Each test week compares

the generated incidents with the true distribution using the proposed evaluation metrics.

Such metrics are then collected for each of the test weeks and aggregated for final model

comparison and significance tests. Fig. 7.2 illustrates my design of experiments to

evaluate the GP framework for incident prediction.

Finally, I set δ = 0.01 and τ = 1
24 (hours) in my experiments. That is, the spatial

dimension is divided into a grid of 100 × 100 squares, and the temporal dimension is

divided into intervals of 1 hour each (indistinguishable for each day). The total number

of bins is thus 240,000 (with a large number of them empty, i.e., having no incidents).

7.4.3 Evaluation

The following models are used as the baselines for comparison with the proposed GP:
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• Linear regression (LM);

• Random forest (RF) regression;

• Support vector machine (SVM) regression with RBF kernel – refer to Eqn. (6.9);

• Gradient boosting regression (GBR).

All these models use the features listed in Table 7.2. For the baselines, I use the off-the-

shelf implementation of the Scikit-learn machine learning library [79] and perform

the same experiments as described above to evaluate them. For all the models, I use

the RMSE, MAE, and MAPE metrics to evaluate them – refer to Eqn. (6.17) – (6.19).

In essence, I am measuring the differences between the expected number of incidents

(predicted by the GP or baselines) and the real number of incidents per bin. I then

average the metrics over all the test weeks and report their means and variances.

7.4.4 Results

Fig. 7.3 shows the results of my experiments for both subsets of data: “Both” (top –

all the incidents) and “Urgent” (bottom – urgent incidents only). For all the incidents,

the figure shows that GP is the best performing model (lowest mean errors) for all

the metrics (particularly MAPE). Pairwise t-tests between GP and the baselines are

significant at the 5% level. For urgent incidents, GP still performs competitively (i.e.,

as good as or better than) compared with the baselines. Except for GBR, GP performs

significantly better than the others. It, however, performs as good as GBR as the figure

shows (i.e., not significant at the 5% level for the three metrics). This is likely due to

the different tactics and respond strategies deployed for urgent incidents. Richer set of

features are perhaps more useful in modeling them. This also probably explains why

SVM performs particularly badly for urgent incidents (with MAPE approaching 0.40).

Notice that in both cases (urgent and both), I don’t observe a “big jump” in performances

of GP (if any), but rather a modest (but significant) improvement. This is to be expected

as the phenomenon under model is rather complex and the set of features used is quite

limited. On the other hand, employing more features would make the model more

complex but risk overfitting. My main purpose here is to demonstrate that, under the

same set of features, the proposed GP model renders a competitive performance.
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Figure 7.3: Mean cross-validation results for incident prediction models for all inci-
dents (top) and urgent incidents only (bottom).

7.4.5 Discussion

For general incident prediction purposes, I conclude that the proposed GP is the best-

performing model. Not only because of its prediction accuracy, but also because of its

ability to generate incident distribution in face of changing policies (encoded as “side

information”). For example, two neighboring sectors might be merged into one and

adopt the policing policy of either one. Such ability to generate distributions proves

indispensable to test the robustness of the resource planning model and compute α̂ as

shown in Fig. A.1. However, it is not discussed here because it falls outside the scope

of the thesis, which focuses on modeling spatiotemporal phenomena in urban settings.

Finally, Fig. 7.4 visualizes the spatial distribution of the all incidents for the whole last

week (week 12) of the evaluation period. The top panel shows the predicted distribution

(learned from week 11) and the bottom one shows the true distribution. The figure

clearly shows that my GP model can quite correctly predict the distributional pattern

over space of the incidents, except for a few minor discrepancies with the ground truth.
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Figure 7.4: Heat maps visualization incident distribution (for all the incidents) over
one test week (week 12) between the predicted (top) and true (bottom) distribution.

7.5 Conclusion

In this chapter, I focus on one an important problem for law enforcement resource op-

timization: incident prediction. To this end, I propose a GP framework that leverages

on what has been developed in the previous chapter to model the spatiotemporal distri-

bution of the incidents taking into account side information such as temporal classifica-

tion and spatial boundaries. I perform extensive experiments using real-world incident

data to validate the framework. My experimental results indicate the superior perfor-

mance of the framework and its utility in testing the robustness of the resource planning

model. Overall, I believe that this work renders an essential stepping stone to an overall

data-driven solution framework for law enforcement agencies (refer to Appendix A) to

efficiently and effectively respond to incidents and plan for future needs.



Chapter 8

Conclusion

8.1 Summary

This thesis has taken the reader through a journey of solving some of the most salient

problems in urban computing: from predicting how people move about in cities under

certain constraints in space and time, to predicting traffic phenomenon and the occur-

rences of crime incidents in urban areas. As impressive as that sounds, it has only

scratched the surface of urban computing, which is still a young and fast growing field

riding on the explosive growth of big data, machine learning and rapid urbanization

across the world. Through solving the specific problems addressed in this thesis, a com-

mon pattern of problem solving emerges that could be abstracted and integrated into a

general solution framework. Such a framework is, therefore, highly extensible to other

problems of similar nature, and has serendipitously become the purpose of this thesis.

The integrated framework combines machine learning methods in creative ways to solve

urban problems using spatiotemporal data. Spatiotemporal data possess certain mod-

eling challenges, most important of which are the violation of the i.i.d. assumption due

to the inherent nature of spacetime processes and the scalability issue of big data in

general. The proposed framework overcomes these challenges by a three-step process:

(1) clustering, (2) environment modeling, and (3) machine learning modeling.

In clustering, the training set is split into finite subsets (or clusters), each modeling a

homogeneous behavior of the phenomenon. Doing so also models the heterogeneity of

the data and reduces the complexity of model training. In Chapters 4–5, trajectory

106



Chapter 8. Conclusion 107

clustering models the heterogeneous population of theme park visitors. In Chapter 6,

spatiotemporal clustering helps reduce the training set into local subsets, which speeds

up training significantly. In environment modeling, the input data and the features

representing the built environment are somehow combined together to more accurately

model the underlying phenomenon. In Chapters 4–5, those are the frames of references

under which agents make their decisions. In Chapters 6–7, those are the spatial features

representing the road networks and urban areas. It is in the latter case1 that the i.i.d.

assumption becomes a problem and when kernel functions come to the rescue. Finally, a

machine learning model is trained based on the input data and the modeled environment.

In Chapters 4–5, it is revealed preference and reinforcement learning model, respectively.

Whereas, Chapters 6–7 use the generative Gaussian process (GP) model.

The framework is then “instantiated” to solve three specific instances of spatiotemporal

problem in urban environments: human mobility prediction (Chapters 4–5), traffic speed

prediction (Chapter 6) and incident prediction (Chapter 7). By solving the problems

studied in this thesis, two subtextual themes emerge:

1. Rationality. Under what conditions do people make optimal decisions?

2. Generalizability. How much data is needed to train a good enough model?

The first theme emerges from solving the decision problems in Chapters 4–5. In both

chapters, the prediction problems are solved by modeling the decision-making process

from the agent’s point of view. In Chapter 4, I deal with an optimal bundle problem,

in which a knapsack problem lends itself as a natural solution. Indeed, it has been

shown that the knapsack decision model outperforms the baselines in various settings.

Recall that the time budget given is rather generous (i.e., 10 hours), given the number

of items (attractions) to choose is only 4 out of 16. It is thus reasonable that most

people make optimal decisions in a “knapsack”-style fashion. On the other hand, it is

non-trivial how to apply the classic knapsack problem in this new spatial setting, where

cost evaluations are dynamic. To this end, HMM is used to model the agent’s “frame

of reference” when making decisions upon knowing its “initial intention”. Such given

initial intention explores the relationship between the amount of information required

for an agent to make an optimal decision or, in other words, for the proposed model

1Generally, generative models such as GPs and most Bayesian models (e.g., naive Bayes) make the
distributional assumption of i.i.d. [71, 83].
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to make an accurate prediction. I have shown through extensive experiments that the

model is rather robust to the gradual reduction in that given information, where its

prediction accuracies do slightly decrease but still outperform the baselines.

In Chapter 5, the visitor’s actual trajectory is to be predicted, which naturally calls for

sequential decision modeling. MDP-based decision models are thus proposed, together

with greedy heuristic ones. Through extensive experiments, I have shown the existence

of two types of visitors, one that the MDP model predicts better, and one in which the

greedy heuristic is the better choice. It turns out that the first type also has substantially

more time budget than the second, almost 2 hours on average. This explains why

the first type makes more optimal decision than the second, whose greedy heuristic

is mathematically suboptimal. In other words, more time is needed to make better

decisions. As simple as that sounds, this was not obvious in the first place. Hence,

in both chapters, time (budget) is the common thread and whose role is crucial to the

optimality of decision making. In Chapter 4, it does not seem to adversely affect the

decisions, since the given budget is quite generous compared to the task. However, in

Chapter 5, when the choice set is such bigger, time becomes the discriminating factor

that decides when an agent makes a more (or less) optimal decision.

The second theme emerges from the prediction problems in Chapters 6–7. In both

chapters, GPs are used to solve the predictive (of traffic speed) and the generative

(of crime incidents) problem. In Chapter 6, where traffic speed distribution over road

networks are to be predicted, I have shown how the complexity of the problem can

be significantly reduced by clustering the training set into “localized” subsets, each

is used to train a “local” GP. This only works due to the relevancy of the clustered

data points and their “side information”, which effectively (and efficiently) predicts the

traffic query at hand. This essentially says that the “more” doesn’t necessarily mean

the “better”. What matters is the clever selection of relevant training data to what is

being predicted. On the other hand, the more may actually mean the better when it

comes to the expressiveness of the kernel function. The chapter has shown that a more

expressive kernel function that incorporates more features often makes better prediction,

but it also takes more time to train. Therefore, the question of how much data is good

enough really boils down to the sensitivity of the modeler to the prediction accuracy

and runtime performance, which can be a natural tradeoff to each other.
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In Chapter 7, the task is to predict (or rather generate) the distribution of crime incidents

over urban areas. The second theme is explored in a slightly different way. While in

the previous chapter, it is the ability to make inferences based on a small subset of

training data, in this chapter, it is the ability to generalize what the model has seen in

the training data to what does not yet exist, i.e., to generate incidents based on a set of

alternative scenarios specified by the modeler. Hence, the concept of generalizability is

explored from two difference perspectives using the same model: one emphasizes on the

using as little data as possible by introducing local GPs, and the other on generating

mockup scenarios as realistically as possible using a global GP. In either case, feature

selection plays an important role that could not be understated, even though it was not

elaborately described in the chapters due to limited scope.

Both themes explored in this thesis are in fact the direct result of the two types of spa-

tiotemporal data used. As explained earlier in Chapter 1, they are the trajectory-based

type and the sensor-based type. While for the trajectory-based type, the phenomenon

is better predicted by modeling it from the agent’s point of view using a discriminative

model, for the sensor-based type, it is better predicted by modeling it more holisti-

cally using a generative probabilistic model that takes into consideration the correlation

structure of other “nearby” sensors (i.e., data points) in space and time.

8.2 Future Directions

8.2.1 Follow-up Work

Chapter 5 is considered to have finished the work left in Chapter 4 by predicting an

actual trajectory produced by an agent (rather than an unordered set). The work left

by Chapter 5 are the followings. For the “early bird” agents, it would be interesting to

know if a more sophisticated sequential decision model such as the adaptive knapsack

with stochastic rewards [45] may be better. For the myopic “latecomers”, it raises the

question of how to more effectively model them, since the proposed greedy heuristic is

rather naive. An exemplar work along this line is due to Sobel and Wei [94].
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For the prediction problems in Chapters 6–7, it might help to model the phenomena

considered (i.e., traffic speed and crime incidents) even more holistically by fusing het-

erogeneous sources of data (e.g., social media and real-time crowd-sourced data such as

news reports) with the original spatiotemporal data. This is one important problem in

urban computing as pointed out by Zheng et al. [112]. Exemplar works along this line

such as [18, 20, 111] have shown to significantly improve predictions.

Specifically, the work in Chapter 6 potentially paves the way to useful applications in

autonomous vehicle routing thanks to its abilities to make high-precision and adaptive

predictions of traffic flows with efficiency. In a not-so-distant future, urban mobility

and transportation systems will be revolutionized by the advancements of autonomous

and connected vehicles, which allow for driverless vehicular control and enable effective

information dissemination among vehicles. Adaptive vehicle routing will then become

one of the most viable technologies to achieve safer and more reliable autonomy. Indeed,

by processing and learning real-time traffic information from probe vehicles and social

media (e.g., Twitter, Waze), vehicles can be provenly routed safely and efficiently in a

non-myopic way. An early exemplar work in this domain is due to Liu et al. [65].

8.2.2 Towards Urban Reasoning

Urban reasoning is “the ability to help urban planners fine-tune their plans using an AI

model and urban sensed data” according to Assem et al. [4]. Or simply put, having

technologies to predict and detect urban phenomena across a city is interesting, but what

is deeper, and would make more impact, is the ability to understand the reasons for the

detected patterns. Hence, urban reasoning extends the vision of urban computing to

provide insights about the reasons underlying the major challenges that cities face [4].

In the context of the proposed framework, it is the ability to derive valid scientific con-

clusions from spatiotemporal data such as the valid measures of association between

variables observed in space and time and causal and ecological inferences (i.e., draw-

ing conclusions about individuals from aggregate-level data). Causal inference with

observational spatiotemporal data is particularly challenging for the same reason that

spatiotemporal statistics is hard. That is, the i.i.d. assumption does not hold and the

data cannot be analyzed as a random sample. An illustrating work in this domain is

due to Flaxman et al. [30], in which the authors were not only able to predict crime
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incidents in the Chicago metropolitan area “far into the future”, but also explain for

the discovered trends and patterns. This is achieved using expressive spectral mixture

covariance kernels capable of learning intricate structure in large datasets.

While kernel methods have been always a favorite one-stop solution to most geospatial

problems, generalizing and incorporating it into a general solution framework that is

capable of deriving valid insights and reasons is a non-trivial task. To this end, many

approaches to causal inference have relied on statistical tests of independence between

variables such as: Fisher z-score, Pearson correlation, and more recently the Hilbert-

Schmidt Independence Criterion (HSIC) [39]. In fact, the entire framework of graphical

models for causal inference proposed by Pearl [78] relies critically on the assumption

about d-separation in graphs. Therefore, testing these assumptions with observational

spatiotemporal data requires applying a valid conditional independence test.

The above tests are prone to report spuriously high correlations when used on non-

i.i.d. data due to the underlying autocorrelated structure [31]. I propose to extend the

capabilities of the framework to incorporate causal reasoning by having a component

to test the conditional independence relationships before the machine learning modeling

step. Specifically, given a tuple of variables (X,Y, Z), we wish to test whether X and Y

are independent of each other given Z, denoted as X⊥⊥Y |Z. Such a test can be robustly

performed by reducing the question about conditional independence with non-i.i.d. data

to the question about unconditional independence with i.i.d. data, which can be readily

answered using the HSIC. Following the framework proposed by Flaxman et al. [31] and

let f be a spacetime process, the following steps can be performed to test X⊥⊥Y |Z:

1. Pre-whiten each variable to eliminate its dependence on f and obtain the residuals:

rX , rY and rZ ;

2. Obtain the residuals εXZ and εY Z by performing GP regressions of rX and rY on

rZ , respectively;

3. Use the HSIC to test for the independence εXZ⊥⊥εY Z .

After having established valid causal relations using the above tests of conditional inde-

pendence, a wide range of machine learning models can be used to model such relation-

ships, including GPs [30, 31] and graphical models (e.g., Bayesian nets) [78].



Appendix A

A Data-driven Solution

Framework for Law Enforcement

Resource Optimization

A.1 Introduction

Traditionally, the staffing and allocation model of law enforcement is accomplished by

simple statistical means based on aggregate historical demands (i.e., the number of

incidents) [103]. Given the uncertain and transient nature of such demand across space

and time, such crude approach yields solution that often contains “slacks” at different

space/time while shortages in others [69]. With today’s availability of big spatiotemporal

data that provides fine-grained details of the incidents, it is now possible to design

adaptive and data-driven staffing models for the allocation of law enforcement resources

that are sensitive to both demand patterns and operational timing constraints.

From the service industry’s perspective, there are two major resource planning problems:

(1) Deciding the staffing levels, that is the number of agents required on duty at each

base location and time slot that satisfies a desired quality of service (QoS) constraint;

and (2) Shift scheduling, that is to translate the staffing levels into practical work shifts.

Staffing level optimization is important in reducing manpower cost and improving the

service quality. Refer to [24], [53] and [17] for successful applications in service delivery
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systems and call centers. In this thesis, we are concerned with the first problem of

staffing level optimization in the context of law enforcement manpower planning.

More precisely, I was involved in a team project that studies the problem of optimizing

the staffing level of law enforcing agents (i.e., police officers) across base locations and

time periods throughout a day using a data-driven approach. Our goal is to design

high-fidelity allocation strategies such as to achieve the QoS for each class of incidents

that maximizes resource savings over the current practice. In order to understand the

real-world context of the work presented in Chapter 7 as well as its significance, I discuss

the key ideas and the overall solution framework in this appendix.

A.2 Problem Statement

Formally, the law enforcement staffing and allocation problem is concerned with deciding

the staffing levels across different base locations L in order to meet the response time

requirement ∆ of a given set of incidents R within a given risk level α. In this chapter,

staffing levels refer to the number of agents (or cars) needed at different base locations

at different time periods of the day. There are two variants of the problem:

• Deterministic resource optimization;

• Stochastic resource optimization.

The former is described by the tuple: < R,L, T ,∆, α >, where R is a set of incidents,

and each incident r ∈ R is a tuple < l, d, c, t, s >, where l is the location, d is the demand

for the resources (e.g., the number of cars), c is the class representing the urgency level,

t is the time of occurrence, and s is the service time. Let the set of base locations for

law enforcement agents be L and Tl,l′,t be the travel time (in minutes) from location l

to location l′ at time t. In practice, upon an emergency call, the operator would first

identify and assign a certain urgency class to the incident. Each urgency class has a

certain maximum response time threshold, and satisfying which is the key metric for the

QoS. Let ∆ be the maximum response time vector of all the urgency classes. Intuitively,

more urgent incidents should be responded faster than less. That is, ∆c < ∆c′ , where c

is a class with higher urgency than c′. The QoS constraint allows at most α fraction of
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Figure A.1: The data-driven framework for law enforcement resource optimization
with quality of service (QoS) guarantees.

the incidents within a planning horizon to “fail”, i.e., whose response times exceed the

maximum threshold ∆ for the incidents in R.

In the stochastic variant, we allow the QoS constraint to be violated over multiple periods

in the planning horizon thereby giving rise to a chance constraint. Let α be a risk value

for the QoS constraint such that it represents the planner’s risk attitude. Let γ be

a risk value for the chance constraints that allow the QoS constraint to be violated at

most γ fraction of the incidents. For example, a chance constraint with a risk value γ

for a 24-hour planning stipulates that the fraction of failed incidents is no more than α

for (1 − γ) fraction of the days in a month. Given 0 ≤ α, γ < 1, our goal is to decide

the optimal staffing level and allocate the agents across all base locations such that the

total resource requirements are minimal while satisfying the QoS constraint. That is,

the probability that all the incidents are responded within the maximum threshold is

≥ 1− α and the probability that all the chance constraints are violated is ≤ γ.

A.3 Solution Overview

The data-driven solution framework for law enforcement resource optimization with QoS

constraint is illustrated in Fig. A.1. As shown in the figure, the framework consists of

two phases: training and test – both make use of the provided incident data.
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In the training phase, given the input QoS parameters α and γ, we propose a mixed

integer linear programming (MILP) model to do optimal resource planning with guaran-

teed QoS. In short, the optimal allocation produced by the model stipulates the precise

number of resources (e.g., police cars) at each base location during the defined time

interval1. Such allocation is then used to “solve” the incidents in the training data, i.e.,

to simulate the responses to the incidents given the allocation. Simultaneously, we also

train two machine learning models for response time and incident prediction:

• The response time prediction model (presented in the next section) is to be used

as an input function for both the resource planning model and the test phase later

on. In particular, in the training phase, it is used partially2 to simulate responses

to the (training) incidents given the computed resource allocation.

• The incident prediction model (discussed in Chapter 7) learns the incident distri-

bution from the training data and generates incidents under diverse scenarios to

test the model’s robustness in the test phase.

Finally, we compute the resource savings (supposedly ≥ 0) induced by the optimal

allocation compared with the current (suboptimal) practice.

In the test phase, the optimal resource allocation learned in the training phase is then

deployed to solve the generated incidents (together with the response time prediction

function). A new fraction α̂ of the incidents that satisfy the QoS constraint is then

computed and compared with the original α to evaluate the model’s robustness.

A.4 Response Time Prediction

This section describes the machine learning model for response time prediction between

the base location and the incident location in order to estimate the agents’ response

time. This is an important component of the data-driven framework for law enforcement

resource optimization depicted in Fig. A.1. We first assume that the agent always starts

from some centroid location of the sector. This is due to the complete lack of information

about the agent’s origin location from the provided data. We can then learn a regression

1Granularity of the time interval is also an input to the model in this sense.
2Together with the Response Simulation model, which is not discussed here.
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Table A.1: Features used to learn the predictive model for the response time.

Feature Description
traffic travel time The time-dependent travel time computed by Google Maps API
mean travel time Hourly average travel time from sector to sector captured by data
is urgent Binary classification whether the incident is urgent or non-urgent
is cross dispatch Whether the responding car comes from a different local center
num cars The number of cars dispatched to respond to the incident
hours The integer hours of the incident’s occurrence time (0–23)

model that predicts the response time from the sector centroid to the incident location

using the derived features. Table A.1 summarizes these features.

In this regression model, the true response time captured by the data (i.e., the duration

from when the agent’s car is dispatched to its arrival time at the scene) is the response

variable. The features in Table A.1 were derived from a combination of both regression

analysis and random forest feature importance. traffic travel time is the estimated

travel time from the agent’s sector centroid location to the incident location computed

by Google Maps API at the time the agent was dispatched. mean travel time is the

hourly average travel time from the agent’s sector to the incident’s sector computed from

the historical data. is urgent is a binary classification whether the incident is urgent

or not. is cross dispatch is a binary variable indicating whether the dispatching car

comes from a different local center. This typically happens when the resources at the

incident’s local center are being deployed and unavailable, thus resources from another

(neighboring) center are called for. num cars is the number of cars dispatched. hours

is the integer hours (0–23) of the incident’s timestamp.

The following models are evaluated: random forest (RF), linear regression (LM), support

vector machine (SVM), and gradient boosting regression (GBR). All these models use the

features listed in Table A.1. We additionally evaluate a naive “baseline” model that uses

the mean travel time feature as the predicted response time for a given test incident.

For SVM, the RBF kernel is used. For GBR, we use the efficient implementation in

the XGBoost package [21]. We use both MAE and RMSE to evaluate the models. We

perform 10-fold cross-validation (CV) and take the mean errors across the folds. The

results are shown in Fig. A.2 with the mean error rates and the variances over 10 folds.

Fig. A.2 shows that the model that performs the best overall (by both MAE and

RMSE) is the GBR model with average MAE well below 4 minutes. Unsurprisingly, the

baseline model performs the worst (since it uses only one feature). GBR is a powerful

ensemble learning method that produces a predictive model in the form of an ensemble
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Figure A.2: Evaluation of models for response time prediction using 10-fold CV.

of week regression trees. It has been shown to be robust against overfitting (hence,

suitable for highly skewed and long-tailed data such as response time) in many machine

learning contests including the Netflix prize [10]. Also, noteworthy is that SVM is just

slightly worse than GBR. However, it is not as scalable as GBR (which uses the efficient

parallel implementation of XGBoost) to train big data. Therefore, we choose GBR as

our predictive model for response time estimation in our MILP model.
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[35] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez.
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