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By 2050, 67% of the world’s population (6 Advanced infrastructure of N \ ST data offers multi-scaled

billion people) would live in urban areas®. the built environment N .. v ” perspectives at the complex
- N {\, .,/ behaviors of urban systems
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Big Data and the (Big)

C t > Use spatiotemporal data to
y make cities safer and smarter.

Heilig, G. K. (2014). World urbanization prospects the 2014 revision. United Nations, Department of
Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections
Section, New York.




Service Providing -
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce Air +—
Pollution, ...
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Urban Data Analytics
Data Mining, Machine Learning, Visualization

Urban Data Management
Spatio-Temporal Index, Stream, Trajectory, and Graph Data Management..
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1. Trajectory 2. Time series of

learning?
(sequential) data geo-referenced data

* RFID, GPS track ¢ Fixed . t
General Framework for Urban Computing Research racker ed sensors, events
Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban
computing: Concepts, methodologies, and applications. ACM

Transactions on Intelligent Systems and Technology
(TIST), 5(3), 38.
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“...unlocks the power of big data collected in urban

spaces to solve major issues cities face today.”

What is this thesis about?
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Rest of the
Presentation:

Motivation

Problems Addressed: Overview

Human Mobility Prediction:
Data and real-world context - Spatial bundle prediction
Problem statement and challenges _ - -

GP: What is it? Why use it? [laisetenjeicachon
Proposed solution framework
Experiments: Design, evaluation and
results

Traffic Speed and Crime Incident Prediction
- Gaussian process (GP) models

 The problem-solving processes of the The Integrated Framework

proposed solution frameworks are
abstracted into a common ‘pipeline’

Contributions and Summary
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Revealed preference learning n
= max E ZT;V;

Spatial Bundle ‘ <

s.t. szwz < W.

Knapsack problem

Prediction

Choose 4 out of 16 attractions
(from9a.m.to 7 p.m.)

Choice Pass

Underwater W

Bundled Pass

Visit all 14 attractions
(from9a.m.to 7 p.m.)

¢ Sentosa ¢
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Prediction S )
Visitor trajectories
Reinforcement learning

Sentosa Data and Context




Spatial Bundle Prediction (Revealed Preference) Trajectory Prediction (Reinforcement Learning)
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Le, T. V., Liu, S., & Lau, H. C. (2016, August). A Reinforcement Learning Framework for
Trajectory Prediction Under Uncertainty and Budget Constraint. In ECAI 2016: 22nd
locations from learning revealed preference data. In Proceedings of the 2015 International European Conference on Attificial Intelligence, 29 August-2 September 2016, The

Conference on Autonomous Agents and Multiagent Systems (pp. 1121-1129). International Hague, The Netherlands-Including Prestigious Applications of Artificial Intelligence (PAIS
Foundation for Autonomous Agents and Multiagent Systems. 2016) (Vol. 285, p. 347). 10S Press.

Le, T. V., Liu, S., Lau, H. C., & Krishnan, R. (2015, May). Predicting bundles of spatial

Proposed Frameworks
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Type 1 visitors arrive earlier,
have larger budget - less
time-sensitive and more well-
planned - MDP better
models this group.

Type 2 visitors arrive later,
have smaller budget - more
time-sensitive and prone to
myopic decision-making -
Greedy heuristics better
model this group.
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Fine-grained Traffic

Speed Prediction Using
Local Gaussian
Processes
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U.S. Traffic Data and Problem

e Speed reading every 5 minutes on some road
segments in Pittsburgh and Washington, D.C.
during March — August, 2014

. SpatiaIIK infer speed values for the whole
network (unobserved locations)

* Temporally infer speeds at future time steps

- Fine-grained inferences (extensive spatial
coverage and short-term horizon) = Needs
accuracy and efficiency for real-time use cases

Z =i
SR

Spatially inferred speed distribution for the whole road network

5 X O\ /. s\
* Main idea: localization — efficient clustering of ' | i % W
spatiotemporally correlated sensors, each ) X
represents a ‘local’ Gaussian process

- Train and predict in real-time in response to a
traffic speed query

—

S e

A z{\ Speed ‘sensors’ regularly sample speeds along select segments in Pittsburgh



What is a Gaussian Process (GP)?

* Consider linear regression: y = 6, + 0,1x + €

50

- Bayesian linear regression finds a (posterior)
distribution for the parameters ® that gets
updated whenever new data are observed.

45+

 GPis a non-parametric approach that finds a Latitude
distribution over all possible functions f(x)

that are consistent with the observed data: af

- Begins with a prior distribution

- Updates it as new data are observed - - 2 n —
Posterior distribution over all functions: Longitude

p(p(DIf)

p f p (D) . ' 2.0 ' PQSterlqr ' 15 Predllct|on ‘WIth U'ncert'cyllnty

10 15

Mean

~
1.5 I/ 1.0k

GP defines a prior over functions, which can be | o,
converted into a posterior over functions once - ol X (.
we have seen some data, which can then be

used for Bayesian regression. - I

-1.5 L ! ! I -1.5

0.5




Why GP?

* Given a set of data points x4, ..., X, GP assumes that
p(f(xl), ...,f(xn)) is jointly Gaussian with some mean
p(x) and covariance X(x) given by X;; = K(xi,yj):

- K is a positive-definite kernel function
- If x; and x; are close to each other in the input

space, the corresponding values in the output
space should also be similar.

* GP is a Bayesian (regression) method (it gives the mean
and ‘error bar’ estimates). It is also a kernel method:

- Projects inputs into high-dimensional feature space
implicitly and efficiently (via the ‘kernel trick’)

- Models additive, multiplicative, convolutional, etc.
interactions of features via ‘kernel arithmetic’.

K(z,z")

_ 2t (@]az - :c’|) VKV (\/ﬂx — x’|>

T'(v) A A

Matern kernel (geospatial statistics)

K(z,2') = 0p%ex Lfz=2 :
’ — U0 p 9 \

Radial basis function (RBF, aka Gaussian) kernel

* Let f be the posterior of the observed
outputs and f, the posterior of the outputs
yet to be observed. Because it is a GP:

() ~*(() (e )

* We can then ‘sample’ the posterior:
f. ~u+ BxXN(0,I), where BBT = %,
(called Cholesky decomposition), which
takes O(N3), where N is the sample size.
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Spatiotemporal \
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(lon, lat) of node u

o = —

o - - o . D = = - P

k((u,v), (W, ")) = k(u, v )k(v, ),

Yu, K., & Chu, W. (2008). Gaussian process models for

link analysis and transfer learning. In Advances in Neural (7', tl)) + § : k(
Information Processing Systems (pp. 1657-1664). )

Node-wise features @

Segment length Length (in miles) of a segment.
Number of lanes The number of lanes a segment has in each direction.‘
Direction Direction of a segment: northbound, southbound, eastbound, or westbound.‘
Degree Degree of two end nodes of an edge (segment).‘ Y

Betweenness Edge betweenness centrality of a segment.‘ .
O Edge-wise features @

Feature Description k (f(J) f(.?) ) ,
7\

Longitude, latitude Longitude and latitude coordinates of the two endpoints (nodes) of a segment.‘ + ('U, ’U)’ (u, ’UI)
3 ’

One-way Is this segment one-way?
Road type One of the 10 defined types: avenue, boulevard, bridge, lane, place, ramp, road,‘

13



GP Framework for Real-time Traffic Speed Prediction
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M
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\ Spatial Clustering / — @ 1 6 11 16 21 Mapping
\ Time .,
PREDICTION @ @ Probabilistically
Nearest Neighbor Mapping _ Temporal Local Training _ Local
(r,t) €Q i

via Spatial Features f,  ~ L Cluster Mapping ~

I

Set (5;, 1)) . GP;(pij, kij)

|
Speed query for road
segmentr attime t

Deterministic cluster
centroid mapping

Real-time training

and prediction

‘Soft’” K-means

clustering

Complexity of a local

GP(i, ) is O <(’;—”j)3>

* Complexity of a global GP
is O((NM)3)
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Experiments: Design and

Evaluation

* ‘Sliding window’ experimental design:

- Train attime t and test at times t + i

W is the length of window of observations

A is the test duration (e.g., 5 minutes)

Evaluate separately for weekdays and weekends

Evaluate six (6) different models (local vs. global,
with/without ‘side information’)

* Let y and y be the estimate and true values, the
evaluation metrics are:

- Mean absolute error (MAE)

- Mean absolute percentage error (MAPE)
- Root-mean-square error (RMSE)

Training Test

Spatiotemporal
Features

Spatiotemporal
Features

==== T

t+1i
X

N T
A\ 4 b

Sliding Window XA

—
I .
RMSE =, | > (@i — )2
i=1

,‘\T
1 &,
MAE = = > i — il
=1
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Experimental Results:
Baselines and Comparison

Le, T. V., Oentaryo, R,, Liu, S., & Lau, H. C. (2017). Local Gaussian Processes
for Efficient Fine-Grained Traffic Speed Prediction. IEEE Transactions on Big
Data, 3(2), 194-207.
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Law

The Law Enforcement Problem Enforcement

Resource
Optimization
Problem
Densely populated urban areas increasingly puts \ e gV P -
pressure on law enforcement (LE) agency’s manpower | A ¢ N | ——
trying to meet ever-rising demands . = - L\‘/s(gngkang
Large databases of crime incidents provide fine- PV ,/ PY
grained details: Ang Mo Kio North @
_ ) ! (wh d when) ° Ang Mo Kio -
Spatiotemporal (where and when o o South\ e -

- Context (textual description, urgency classification, type and

. On any given day, no more than a fraction of
police response)

° the incidents ‘fails’ (not responded on time)

It is possible to make high-precision predictions of . : —a o

incident occurrences using ML - X ! , O

Thi | £ 2 datadr uti S ) e «=as ToaPayoh \
- N

‘ IS serveli? alr_éer purpose o -a : d a riven solution . KampongJava ‘ ey
Famework 1or resource optimization _ ‘,»'/ > Q chbng
- Time taken to respond to an incident (called “response time”) . Bukit Timah X = { 1 =

is a common KPI for many LE agencies y Rochor/ @ “=av

‘ | ’ 42



Data-driven
Framework for

Law
Enforcement
Resource
Optimization

a,Y: parameters
defined the % of
incidents unlikely to be
responded “on time”

\.|

Focus on this part of
the framework!

A\

Objective of the
optimization
TRAINING T |
4 . Current | \/
>@ . Practice
[ 7
\ _| Resource
) . Savings
Resou.rce solves Training X
L Planning " Incidents
Model —
3 /
_Response Time Response
Prediction Simulation
‘solves”
Incident
% Prediction
TEST
Generated .
> . ) 4
Incidents

Jonathan Chase, Jiali Du, Na Fu, Truc Viet Le and Hoong Chuin Lau. Law Enforcement Resource Optimization with Response Time Guarantees.
Accepted to the 2017 IEEE Symposium Series on Computational Intelligence (SSCI 2017), Honolulu, Hawaii, USA.
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Problem Statement

Divide the city’s maps and timeline into | S|
finite grid squares and | T| intervals

For each ‘type’ of incident, model the
distribution of the count (i.e., number of
incidents) within each spatiotemporal
combination |S| | T|

Each such combination is called a ‘bin’

Given a query (x,y,t), hash itinto a bin
index i that has features f;

Predict the count variable in i

Assuming uniform distribution of the incident
occurrence within each bin




Why ‘count’ variable?

For each sector, given the number of
incidents that occur in it at each interval

The number of cars allocated in that sector
at that interval (prescribed by the
optimization) guarantees that the response
time KPI can be reached with prob. > 1 — «

Hence, we don’t need to predict the precise
location and time of each incident

The simulator assumes uniform distribution
of incidents within each sector

5

145

Num. of incidents

Count of incidence within each sector

o
2
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Crime Data and Context

Real-world data provided by a large national

law enforcement agency

Spans over one-year period 2013-14

Contains more than 200,000 reported '
incidents (e.g., from emergency calls)

Each incident has: location, timestamp, type,

urgency classification, dispatch and response
information (incl. response time) / I I‘ E REPOR I
Metadata containing neighborhood/sector I I I EEEEEIEEEEEE S

boundaries and police deployment Date:
information

Ang Officer: Prepared By:

22



GP Framework for Incident Prediction

TRAINING 5

——(3) GP

|

~— Bin GP  Expected #

TEST (x,y,t) Mapping (X, yir ti, £;) Regression  incidents at i

Notation Description

S, |S| Spatial dimension and number of spatial grids, respectively

T, |T| Temporal dimension and number of time intervals, respectively

o, T Parameters specifying the granularity of the spatial and temporal dimension
z,y,t Longitude, latitude and timestamp, respectively

Ti,Yi,ti Centroid coordinates of bin 7 and interval index, respectively

f; Feature vector of bin 2

Training:

Step 1: Discretize the spatial
dimension into grid squares

Step 2: Discretize the
temporal dimension into
intervals = |S||T| bins
- Compute the feature
vector f; of each bin i

Step 3: Learn the count
distribution using
spatiotemporal GP coupled
with the features of each bin

23



GP Kernel and Features

The spatiotemporal kernel function between bins i and j:

k((x'h yivti)v (xjv Y tj)) - ks((wia yi)a (wj’yj))kt(ti’ tj)a

\
|

Matern/RBF kernel: Spatial X Temporal

(lon, lat) of
the centroid

k((x’i,yiatiaf’i)a(xjaxjatjafj)) -

- k((mza y’i,tz’)a (xj’ Yjs tj)) + Z k(f’&" fj))

_Feature Description
\ f } location Longitude and latitude coordinates of the incident
Y hours The integer hours of the incident’s occurrence time (0-23) |

is_weekend Binary variable whether the incident occurs on the weekend )
neighborhood Categorical variable specifying the incident’s neighborhood
sector Categorical variable specifying the incident’s sector

Linear kernel: Additive features

24



Experiments: Design and Evaluation

Two types of incidents:
* Urgent (33%)
* Both (urgent + non-urgent)

“Sliding window” experimental design (n = 12):

| } }
Train Test Test n * 5 =100x100 squares
i ¥ I - ! I ) e T =1{24} hours-
1 Train t Train Test Weeks —> Avg. count per bin per
| | t weekday/weekend (Training)

Evaluation metrics are:

* Mean absolute error (MAE)

* Mean absolute percentage error (MAPE)
* Root-mean-square error (RMSE)

Finally, take the average of each of the metrics for all the test weeks (6).




Experimental Results: Baselines and Comparison

Both
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THE INTEGRATED FRAMEWORK:

Modeling and Predicting
Spatiotemporal
Phenomena in Urban
Environments




The Framework

Spatiotemporal
Data

> Trajectory clustering
> Matrix factorization

> Incident types

LEARNING @ @ @
- - - |+ Revealed Preference (RP) |
S Spatloterr.1po*ral EnV|roan1ent S Machme 4+ Reinforcement Leaning (RL) i
/ f Clustering T Modeling H; Learning Model M; |« Gaussian Process (GP) ;
jefl, ... K}
PREDICTION @ @ v @ @ N
A ] k Environment | Hk ; - | * Knapsack i
LT > Classification > , > M, ’s Parameters O > SOLVE [-» * Decision Models |
fi Mapping i * GP Regression E

> Logistic regression
> k-NN
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Contributions and
Summary

* Extends the “Urban Data Analytics” box (data
mining, machine learning, visualization) of the
Urban Computing Framework (Zheng et al., '14)

* The framework combines ML methods to solve a
diverse set of real-world problems in urban
environments using spatiotemporal data

- Human mobility prediction
- Traffic speed prediction
- Crime incident prediction

* The framework abstracts features of the
individual solutions into a common problem-
solving process that is highly generalizable

- Clustering and classification
- Modeling of the environment
- Environmental mapping and ML parameters retrieval
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