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Big	Data	and	the	(Big)	
City

1Heilig,	G.	K.	(2014).	World	urbanization	prospects	the	2014	revision. United	Nations,	Department	of	
Economic	and	Social	Affairs	(DESA),	Population	Division,	Population	Estimates	and	Projections	
Section,	New	York.

By	2050,	67% of	the	world’s	population	(6	
billion	people)	would	live	in	urban	areas1.

ST	data	offers	multi-scaled	
perspectives	at	the	complex	
behaviors	of	urban	systems.

Advanced	infrastructure	of	
the	built	environment

Multimodal	transportation	networks

>	Use	spatiotemporal	data	to	
make	cities	safer	and	smarter.
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PREDICTION

LEARNING

𝑫

Spatiotemporal
Data

? ? ?

? ? ?

General Framework for Urban Computing Research
Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban 
computing: Concepts, methodologies, and applications. ACM 
Transactions on Intelligent Systems and Technology 
(TIST), 5(3), 38.

Crimes

Mobility

Traffic

>	‘Framework’?
>	Machine	
learning?

What	is	this	thesis	about?

“…unlocks	the	power	of	big	data	collected	in	urban	
spaces	to	solve	major	issues	cities	face	today.”
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Problems	Addressed:	Overview

POIs,	
Trajectory	
Prediction

Human	Mobility

Real-time	
Speed	
Prediction

Traffic	Speed

Distribution	
of	Incidents	
over	Urban	
Areas	

Crime	Incidents

> > >
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Rest	of	the	
Presentation: • Motivation

• Problems	Addressed:	Overview

• Human	Mobility	Prediction:
- Spatial	bundle	prediction
- Trajectory	prediction

• Traffic	Speed	and	Crime	Incident	Prediction
- Gaussian	process	(GP)	models

• The	Integrated	Framework

• Contributions	and	Summary

• Data	and	real-world	context
• Problem	statement	and	challenges
• GP:	What	is	it?	Why	use	it?
• Proposed	solution	framework
• Experiments:	Design,	evaluation	and	

results

• The	problem-solving	processes	of	the	
proposed	solution	frameworks	are	
abstracted	into	a	common	‘pipeline’
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Human	Mobility	Prediction
PROBLEM	I-II
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Sentosa	Data	and	Context

Bundled Pass

Choice Pass

Day Pass

Choose	4 out	of	16 attractions
(from	9	a.m.	to	7	p.m.)

Visit	all	14 attractions
(from	9	a.m.	to	7	p.m.)

Spatial	Bundle
Prediction

Trajectory
Prediction

Reinforcement	learning

Revealed	preference	learning

Knapsack	problem

Visitor	trajectories
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PREDICTION"

LEARNING"

Proposed	Frameworks

Spatial	Bundle	Prediction	(Revealed	Preference) Trajectory Prediction	(Reinforcement	Learning)

Le, T. V., Liu, S., & Lau, H. C. (2016, August). A Reinforcement Learning Framework for 
Trajectory Prediction Under Uncertainty and Budget Constraint. In ECAI 2016: 22nd 
European Conference on Artificial Intelligence, 29 August-2 September 2016, The 
Hague, The Netherlands-Including Prestigious Applications of Artificial Intelligence (PAIS 
2016) (Vol. 285, p. 347). IOS Press.

Le, T. V., Liu, S., Lau, H. C., & Krishnan, R. (2015, May). Predicting bundles of spatial 
locations from learning revealed preference data. In Proceedings of the 2015 International 
Conference on Autonomous Agents and Multiagent Systems (pp. 1121-1129). International 
Foundation for Autonomous Agents and Multiagent Systems.

Clustering

Env.	Modeling

ML	Model

Classification

Env.	Mapping

ML	Prediction
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Evaluations	and	Findings

Bundle	Prediction:	Evaluation	and	Comparison

Trajectory	Prediction:	Two	Agent	Types	(Clusters)

Trajectory	Prediction:	Two	Modes	of	Decision-making

• Type	1	visitors	arrive	earlier,	
have	larger	budget	→	less	
time-sensitive	and	more	well-
planned	→	MDP better	
models	this	group.

• Type	2	visitors	arrive	later,	
have	smaller	budget	→	more	
time-sensitive	and	prone	to	
myopic	decision-making	→	
Greedy heuristics	better	
model	this	group.
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Fine-grained	Traffic	
Speed	Prediction	Using	

Local	Gaussian	
Processes
PROBLEM	III
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U.S.	Traffic	Data	and	Problem

• Speed	reading	every	5	minutes	on	some	road	
segments	in	Pittsburgh	and	Washington,	D.C.	
during	March	– August,	2014

• Spatially	infer	speed	values	for	the	whole	
network	(unobserved	locations)

• Temporally	infer	speeds	at	future	time	steps
- Fine-grained	inferences	(extensive	spatial	

coverage	and	short-term	horizon)	à Needs	
accuracy	and	efficiency	for	real-time	use	cases

• Main	idea:	localization – efficient	clustering	of	
spatiotemporally	correlated	sensors,	each	
represents	a	‘local’	Gaussian	process
- Train	and	predict	in	real-time	in	response	to	a	

traffic	speed	query

Speed	‘sensors’	regularly	sample	speeds	along	select	segments	in	Pittsburgh

Spatially	inferred	speed	distribution	for	the	whole	road	network
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What	is	a	Gaussian	Process	(GP)?

• Consider	linear	regression:	𝑦 = 𝜃% + 𝜃'𝑥 + 𝜖
- Bayesian linear	regression	finds	a	(posterior)	
distribution	for	the	parameters	Θ that	gets	
updated	whenever	new	data	are	observed.

• GP	is	a	non-parametric	approach	that	finds	a	
distribution	over	all	possible	functions 𝑓(𝑥)
that	are	consistent	with	the	observed	data:
- Begins	with	a	prior distribution
- Updates	it	as	new	data	are	observed	à
Posterior distribution	over	all	functions:

• GP	defines	a	prior	over	functions,	which	can	be	
converted	into	a	posterior	over	functions once	
we	have	seen	some	data,	which	can	then	be	
used	for	Bayesian	regression.

𝑝 𝑓 𝐷 =
𝑝 𝑓 𝑝(𝐷|𝑓)

𝑝(𝐷)

Longitude

Latitude

Traffic	speed	sample	in	Pittsburgh

Mean

Stdv
True
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Why	GP?
• Given	a	set	of	data	points	𝑥', … , 𝑥3,	GP	assumes	that	
𝑝 𝑓 𝑥' , … , 𝑓 𝑥3 is	jointly	Gaussian	with	some	mean
𝜇(𝑥) and	covariance Σ(𝑥) given	by	Σ67 = 𝐾 𝑥6, 𝑦7 :
- 𝐾 is	a	positive-definite	kernel	function
- If	𝑥6 and	𝑥7 are	close	to	each	other	in	the	input	
space,	the	corresponding	values	in	the	output	
space	should	also	be	similar.

• GP	is	a	Bayesian (regression)	method	(it	gives	the	mean	
and	‘error	bar’	estimates).	It	is	also	a	kernelmethod:
- Projects	inputs	into	high-dimensional	feature	space	
implicitly	and	efficiently	(via	the	‘kernel	trick’)

- Models	additive,	multiplicative,	convolutional,	etc.	
interactions	of	features	via	‘kernel	arithmetic’.

Matern kernel	(geospatial	statistics)

Radial	basis	function	(RBF,	aka	Gaussian)	kernel

• Let	𝑓 be	the	posterior	of	the	observed	
outputs	and	𝑓∗ the	posterior	of	the	outputs	
yet	to	be	observed.	Because	it	is	a	GP:

• We	can	then	‘sample’	the	posterior:	
𝑓∗	~	𝜇 + 𝐵×𝑁(0, 𝐼),	where	𝐵𝐵A = Σ∗
(called	Cholesky decomposition),	which	
takes	𝑂(𝑁C),	where	𝑁 is	the	sample	size.
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Spatiotemporal	
GP	Kernel	for	
Road	Networks

𝑣

𝑢

𝑣′

𝑢′

𝑣

𝑢

𝑣′

𝑢′

Yu,	K.,	&	Chu,	W.	(2008).	Gaussian	process	models	for	
link	analysis	and	transfer	learning.	In	Advances	in	Neural	
Information	Processing	Systems (pp.	1657-1664).

(lon,	lat)	of node	𝑢

Time	(RBF)

Node-wise	features

Edge-wise	features

𝐺 = (𝑉, 𝐸)

Space	(Matern)
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GP	Framework	for	Real-time	Traffic	Speed	Prediction

Matrix	factorization

Real-time	training
and	prediction

• Complexity	of	a	local

GP(𝑖, 𝑗) is	𝑂 NO
PQ

C

• Complexity	of	a	global	GP	
is	𝑂( 𝑁𝑀 C)

‘Soft’	K-means	
clustering

Deterministic	cluster	
centroid	mapping

Probabilistically

Speed	query for	road	
segment	𝑟 at	time	𝑡
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Experiments:	Design	and	
Evaluation

• ‘Sliding	window’	experimental	design:
- Train	at	time	𝑡 and	test	at	times	𝑡 + 𝑖
- 𝑊 is	the	length	of	window	of	observations
- Δ is	the	test	duration	(e.g.,	5	minutes)
- Evaluate	separately	for	weekdays and	weekends
- Evaluate	six (6)	different	models	(local	vs.	global,	
with/without	‘side	information’)

• Let	𝑦W and	𝑦 be	the	estimate	and	true	values,	the	
evaluation	metrics are:
- Mean	absolute	error	(MAE)
- Mean	absolute	percentage	error	(MAPE)
- Root-mean-square	error	(RMSE)
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Experimental	Results:	
Baselines	and	Comparison

Predicted	traffic	speed	distribution	in	Pittsburgh	in	3	future	time	steps

Mean	errors	measured	in	MAE,	MAPE	and	RMSE

Le,	T.	V.,	Oentaryo,	R.,	Liu,	S.,	&	Lau,	H.	C.	(2017).	Local	Gaussian	Processes	
for	Efficient	Fine-Grained	Traffic	Speed	Prediction.	IEEE	Transactions	on	Big	
Data,	3(2),	194-207.	
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Incident	Prediction	for	
Law	Enforcement	
Resource	
Optimization

PROBLEM	IV
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The	Law	Enforcement	Problem

• Densely	populated	urban	areas	increasingly	puts	
pressure	on	law	enforcement	(LE)	agency’s	manpower	
trying	to	meet	ever-rising	demands

• Large	databases	of	crime	incidents	provide	fine-
grained	details:
- Spatiotemporal	(where	and	when)
- Context	(textual	description,	urgency	classification,	type	and	

police	response)

• It	is	possible	to	make	high-precision	predictions	of	
incident	occurrences using	ML

• This	serves	a	larger	purpose	of	a	data-driven	solution	
framework	for	LE	resource	optimization
- Time	taken	to	respond	to	an	incident	(called	“response	time”)	

is	a	common	KPI	for	many	LE	agencies

Law	
Enforcement	
Resource	

Optimization	
Problem

On	any	given	day,	no	more	than	𝛼 fraction	of	
the	incidents	‘fails’	(not	responded	on	time)
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Data-driven	
Framework	for	

Law	
Enforcement	
Resource	

Optimization

parameters	
defined	the	%	of	

incidents	unlikely	to	be	
responded	“on	time”

Focus	on	this part	of	
the	framework!

Objective of	the	
optimization

Jonathan	Chase,	Jiali Du,	Na	Fu,	Truc	Viet	Le	and	Hoong Chuin Lau.	Law	Enforcement	Resource	Optimization	with	Response	Time	Guarantees.
Accepted	to	the	2017	IEEE	Symposium	Series	on	Computational	Intelligence	(SSCI	2017),	Honolulu,	Hawaii,	USA. 19



Problem	Statement

• Divide	the	city’s	maps	and	timeline	into	|S|	
finite	grid	squares	and	|T|	intervals	

• For	each	‘type’	of	incident,	model	the	
distribution	of	the	count (i.e.,	number	of	
incidents)	within	each	spatiotemporal	
combination	|S||T|

• Each	such	combination	is	called	a	‘bin’

• Given	a	query	(𝑥, 𝑦, 𝑡),	hash	it	into	a	bin	
index	𝑖 that	has	features	𝐟6

• Predict	the	count	variable	in	𝑖
• Assuming	uniform	distribution	of	the	incident	
occurrence	within	each	bin

Urgent

Non-urgent

𝑆

𝑇
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Why	‘count’	variable?

• For	each	sector,	given	the	number	of	
incidents	that	occur	in	it	at	each	interval

• The	number	of	cars	allocated	in	that	sector	
at	that	interval (prescribed	by	the	
optimization)	guarantees	that	the	response	
time	KPI	can	be	reached	with	prob.	≥ 1 − 𝛼

• Hence,	we	don’t	need	to	predict	the	precise	
location	and	time	of	each	incident

• The	simulator	assumes	uniform	distribution	
of	incidents	within	each	sector

Incident	occurrences	within	each	sector

Count	of	incidence	within	each	sector

Num.	of	incidents

Num.	of	cars

Num.	of	cars
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Crime	Data	and	Context

• Real-world	data	provided	by	a	large	national	
law	enforcement	agency

• Spans	over	one-year	period	2013-14
• Contains	more	than	200,000	reported	
incidents	(e.g.,	from	emergency	calls)

• Each	incident	has:	location,	timestamp,	type,	
urgency	classification,	dispatch	and	response	
information	(incl.	response	time)

• Metadata	containing	neighborhood/sector	
boundaries	and	police	deployment	
information
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GP	Framework	for	Incident	Prediction

GP
Regression

Incident
Data

TRAINING

TEST

+

𝛿 𝜏

GP

𝐟

(𝑥, 𝑦, 𝑡) Bin
Mapping

Expected	#	
incidents	at	𝑖

1
2

3

𝑆

𝑇

(𝑥6, 𝑦6, 𝑡6, 𝐟6)

Training:
• Step	1:	Discretize	the	spatial	

dimension	into	grid	squares

• Step	2:	Discretize	the	
temporal	dimension	into	
intervals	à 𝑆 |𝑇| bins
- Compute	the	feature	

vector	𝐟6 of	each	bin	𝑖

• Step	3:	Learn	the	count	
distribution	using	
spatiotemporal	GP	coupled	
with	the	features	of	each	bin
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GP	Kernel	and	Features

The	spatiotemporal	kernel	function	between	bins	𝑖 and	𝑗:

Spatial Temporal
(lon,	lat)	of
the	centroid

Linear kernel:	Additive	features

×

count

Matern/RBF	kernel:
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Experiments:	Design	and	Evaluation

Evaluation	metrics are:
• Mean	absolute	error	(MAE)
• Mean	absolute	percentage	error	(MAPE)
• Root-mean-square	error	(RMSE)

Finally,	take	the	average of	each	of	the	metrics	for	all	the	test weeks	(6).

• 𝑆 = 100×100 squares
• 𝑇 = 24 hours
à Avg.	count	per	bin	per	
weekday/weekend	(Training)

Two	types	of	incidents:
• Urgent	(33%)
• Both (urgent	+	non-urgent)

“Sliding	window”	experimental	design	(𝑛 = 12):

𝑇

𝑆25



Experimental	Results:	Baselines	and	Comparison

• Linear	regression	
(LM)

• Random	forest	
(RF)

• Support	vector	
machine	(SVM)

• Gradient	boosting	
regression	(GBR)

Comparing	the	predicted and	actual number	of	incidents	
(both for	weekday	+	weekend)	for	one	particular	test	week

Both

Urgent

Predicted

Actual
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Modeling	and	Predicting	
Spatiotemporal	
Phenomena	in	Urban	
Environments

THE	INTEGRATED	FRAMEWORK:
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The	Framework

PREDICTION

LEARNING

𝑆 Spatiotemporal
Clustering*

Classification*𝑖 ∈ 𝑇

Environment
Modeling

Machine
Learning	Model	𝑀7

Environment
Mapping 𝑀e’s	Parameters	Θe SOLVE

𝑗 ∈ {1, … , 𝐾}

𝑘

𝐟6

𝐟

𝑫

𝐇e

𝐇7

• Revealed	Preference	(RP)
• Reinforcement	Leaning	(RL)
• Gaussian	Process	(GP)

• Knapsack
• Decision	Models
• GP	Regression

1 2 3

1 2 3 4

Spatiotemporal	
Data

>	Trajectory	clustering
>	Matrix	factorization
>	Incident	types
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Longitude
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Transitions between Attractions in Sentosa

>	Road	networks
>	Urban	area	boundaries

Frame	of	
reference

>	Logistic	regression
>	k-NN
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Contributions	and	
Summary

• Extends	the	“Urban	Data	Analytics”	box	(data	
mining,	machine	learning,	visualization)	of	the	
Urban	Computing	Framework	(Zheng	et	al.,	’14)

• The	framework	combines	ML	methods	to	solve	a	
diverse	set	of	real-world	problems	in	urban	
environments	using	spatiotemporal	data
- Human	mobility	prediction
- Traffic	speed	prediction
- Crime	incident	prediction

• The	framework	abstracts	features	of	the	
individual	solutions	into	a	common	problem-
solving	process	that	is	highly	generalizable
- Clustering	and	classification
- Modeling	of	the	environment
- Environmental	mapping	and	ML	parameters	retrieval
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Thank	You	and	
Questions?
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