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What	is	a	Model?
• A	mathematical	formalization	of	the	relationships
between	variables:
– Independent	variables	(X)	and	dependent	variables	(Y)
– Y =	f(X),	e.g.,	regression	models

• A	model	is	a	statistical	model	when	the	variables	are	
probabilistically/stochastically	related
– Y and	X are	related	through	a	probability	distribution	
function	f

– Y	=	Pr(X=x),	e.g.,	Gaussian	(normal)	distribution

• Hidden	Markov	Models	(HMMs)	are	statistical	models



Descriptive &	GenerativeModels
• Y:	observed,	measurable	variables	(e.g.,	symptoms);	X:	underlying,	

latent	(hidden),	unobserved variable	(e.g.,	disease)

• A	descriptive	model	is	the	conditional	probability	distribution
Pr(X|Y)à dependence	of	the	unobserved	variable	on	the	observed
– E.g.,	logistic/linear	regressions

• A	generative	model	randomly	generates	observable	data given	the	
estimated	parameters
– Specifies	the	joint	probability	distribution	between	the	observed	and	

unobserved	variables	Pr(X,	Y)
– Used	to	simulate/generate	values	of	any	variables	in	the	model	à

forecasting,	testing	hypotheses
– E.g.,	HMMs,	finite	mixture	models	(special	case	of	HMM)



Hidden	Markov	Models	(HMMs)
• Describe	the	relationship between	two stochastic	processes:	the	

observed process	&	the	unobserved (hidden/latent)	underlying	
process

– Hidden	process	follows	a	Markov	chain
• Describe	the	hidden	states	by	random	variable	X

– Observations are	typically	a	sequence	(e.g.,	time	series)	and	are	
conditionally	independent	given	the	sequence	of	hidden	states
• Describe	the	observations by	random	variable	Y



Example:	Regime	Switching	Model
• Modeling	the	hidden	“regimes”	of	financial	markets	– switches	between	

periods	of	high	volatility	&	low	volatility,	bearish &	bullish,	etc.

• Recently,	Markov	Switching	Multifractal (MSM)	asset	pricing	model
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Markovian Property	of	the
Hidden	States

The	present	state	
depends	on	the	

immediate	past	state	
and	nothing	else!

State

Transition	probability



Example:	Factor Analysis

The	overachiever

The	rest

The	underachiever

Finite	mixture	of	3	Gaussians.	Notice	
there	are	no	transitions	between	the	
hidden	states	(aka	latent	factors)



Example:	Facial Recognition
• Learning	of	moving	facial	images	over	time
• Each	facial	feature	(e.g.,	nose,	eyes,	etc.)	is	a	hidden	state	of	the	HMM
• Observed	variables	are	the	(x,	y)	coords of	the	features	on	the	images

Alon,	J.,	Sclaroff,	S.,	Kollios,	G.,	&	Pavlovic,	V.	(2003,	June).	
Discovering	clusters	in	motion	time-series	data.	In Computer	
Vision	and	Pattern	Recognition,	2003.	Proceedings.	2003	IEEE	
Computer	Society	Conference	on	(Vol.	1,	pp.	I-375).	IEEE.



Parameters of	an	HMM

p1 p2 p3

(1) Initial	probabilities	
pi =	Pr(S1=pi)	for	i =	1,	…	,	3

(2)	Transition	probabilities/
Transition	matrix	of	the
underlyingMarkov	chain
e.g.,	a12 =	Pr(St=X2|St-1=X1) (3)	Emission	probabilities

b34 =	Pr(Yt=y4|Xt=X3)

Observations	(Y)



Estimation of	an	HMM’s	Parameters
(Model	Learning)

• HMMs	are	typically	learned	using	the	Expectation-
Maximization (EM)	algorithm	– not discussed	here

• The	parameters of	an	HMM	are:
– Set	of	hidden	states	S =	{S1,	S2,	…,	SN}	for	an	N-state	model

– Vector	of	initial (state)	probabilities	p =	(p1,	p2,	…,	pN)

– Transition probability	matrix	(NxN)	A =	{aij},	where
• aij =	Pr(Xt =	Sj |	Xt-1 =	Si)

– Emission (response)	probability	distribution/density	function	f =	
Pr(Yt =	y |	Xt =	x)
• Could	be	discrete/continuous/categorical	function
• Could	also	be	multivariate



Model	Selection,	Validation &	
Inference in	HMMs

• Since	HMM	is	a	generative	model	à Validate	it	by	testing	how	well	it	
reflects	the	reality

• Generate	random	observations	using	the	learned	HMM	(from	the	partial	
data)	and	compare	those	with	the	holdout	(test)	set	(e.g.,	cross	validation)

• Many	statistical	tests	exist	for	this	purpose	(depending	on	the	emission	
density	function)

• How	to	select	the	optimal	#	hidden	states	N?	Typically	using		AIC or	BIC
(Bayesian	Information	Criterion)

• Inference (not discussed)
– Joint	probability	of	an	observed	sequence
– Joint	probability	of	a	sequence	of	hidden	states	given	the	observations	à

Viterbi	algorithm



WITH	THE	DEPMIXS4 PACKAGE
Applying	HMMs	Using	



MODELING	VISITORS’	TRAJECTORIES	IN	
SENTOSA USING	HMM’S

Real-world	Application



Background	on	Sentosa Play	(Day)	Pass

• Is	an	attraction	bundling	scheme	marketed	by	Sentosa

• Play	one	price and	redeem	up	to	17 participating	
attractions	in	Sentosa – “Up	to	70%	Savings!”

• Price	variability	depends	on:
– Adult/Child
– Weekday/Weekend
– 1Day/2Day	Pass

• Pass	valid	from	9am to	6pm (10-hour	period)	daily	(for	one-
day	use	only)



17 Participating	Attractions

Cable	Car	(7)

(5)

Butterfly	Park	(13)

(9),	(23),
(29)

(2)
(4)

Skyride &	Luge	(41)	&	(43)

Segway	(28)

Bi-pedal	Bicycle	(83)

McDonald’s	(89)

(86)

(35)

(85)
(52)

Imbiah Cluster

Siloso Cluster

Periphery



Spatio-temporal	Trajectories
• Collected	for	7	months	in	2012–2013
• Involves	over	30K visitors in	total,	each	produces	a	trajectory

• Each	trajectory	is	a	temporally-ordered	sequence	of	attraction	visits	with	
length	varying	from	1	to	17	(approx.	normal	w/	mean	around	8-9)

• Each	trajectory	is	a	bivariate spatio-temporal	sequence
– Sequence	of	attractions	(events):	discrete r.v.
– Sequence	of	times-to-event:	continuous r.v.	(#	mins from	9am	until	the	visit)

• Reflects	the	diverse	behaviors (observed)	and	the	preferences/tastes
(unobserved)	of	visitors	that	are	confined by	the	pass’s	T&C’s	and	the	
physical	clustering	of	the	attractions	+	human	activities	(e.g.,	lunchtime)



Model	Specification &	Fitting
• Specify	an	HMM	using	

depmixS4 with:
– Bivariate	response:	multinomial

(discrete	attractions/events)	+	
Gaussian (continuous	time-to-event)

– Incremental	fitting	to	determine	the	
optimal	#	states	using	BIC

– Important	to	specify	the	
independent	sequences for	each	of	
these	individuals	(30K reduced	to	
14K through	groupings)

– Takes	very	long	time due	to	HUGE
dataset!



Model	Validation w/	6-fold Cross	Validation	(1)



Model	Validation w/	6-fold Cross	Validation	(2)



Distr.	of	Time-to-Event for	Each	Attraction



Logrank Tests	of	Distributions	of	Time-to-Event Using	
Survival	Analysis



Physical	Clustering	of	the	Attractions

Mins



Learned	Clusters	through	the	HMM’s	
Emission	Parameters
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