R User Group – Singapore (RUGS)

Hidden Markov Models & Applications Using R

Truc Viet 'Joe' Le

What is a **Model**?

- A mathematical formalization of the *relationships* between variables:
 - Independent variables (X) and dependent variables (Y)
 - Y = f(X), e.g., regression models
- A model is a *statistical model* when the variables are *probabilistically/stochastically related*
 - Y and X are related through a probability distribution function f
 - Y = Pr(X=x), e.g., Gaussian (normal) distribution
- Hidden Markov Models (HMMs) are statistical models

Descriptive & Generative Models

- Y: **observed**, measurable variables (e.g., symptoms); X: underlying, latent (hidden), **unobserved** variable (e.g., disease)
- A descriptive model is the conditional probability distribution
 Pr(X | Y) → dependence of the unobserved variable on the observed
 E.g., logistic/linear regressions
- A generative model randomly generates observable data given the estimated parameters
 - Specifies the *joint probability distribution* between the observed and unobserved variables **Pr(X, Y)**
 - Used to simulate/generate values of any variables in the model → forecasting, testing hypotheses
 - E.g., HMMs, finite mixture models (special case of HMM)

Hidden Markov Models (HMMs)

Describe the relationship between two stochastic processes: the observed process & the unobserved (hidden/latent) underlying process

- Hidden process follows a Markov chain
 - Describe the hidden states by random variable X
- Observations are typically a sequence (e.g., time series) and are conditionally independent given the sequence of hidden states
 - Describe the observations by random variable Y

Example: Regime Switching Model

 Modeling the hidden "regimes" of financial markets – switches between periods of high volatility & low volatility, bearish & bullish, etc.

• Recently, Markov Switching Multifractal (MSM) asset pricing model

Markovian Property of the Hidden States

Markov Chain

Example: Factor Analysis

Finite mixture of **3 Gaussians**. Notice there are **no transitions** between the hidden states (aka *latent factors*)

Example: Facial Recognition

- Learning of moving facial images over time
- Each facial feature (e.g., nose, eyes, etc.) is a hidden state of the HMM
- **Observed variables** are the (x, y) coords of the features on the images

Alon, J., Sclaroff, S., Kollios, G., & Pavlovic, V. (2003, June). Discovering clusters in motion time-series data. In *Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on* (Vol. 1, pp. I-375). IEEE.

Parameters of an HMM

Estimation of an HMM's Parameters (Model Learning)

- HMMs are typically learned using the Expectation-Maximization (EM) algorithm – not discussed here
- The **parameters** of an HMM are:
 - Set of hidden states $S = \{S_1, S_2, ..., S_N\}$ for an **N**-state model
 - Vector of **initial** (state) probabilities $\mathbf{p} = (p_1, p_2, ..., p_N)$
 - **Transition** probability matrix (NxN) **A** = { a_{ii} }, where
 - $a_{ij} = Pr(X_t = S_j | X_{t-1} = S_i)$
 - **Emission** (response) probability distribution/density function $f = Pr(Y_t = y | X_t = x)$
 - Could be discrete/continuous/categorical function
 - Could also be multivariate

Model Selection, Validation & Inference in HMMs

- Since HMM is a generative model → Validate it by testing how well it reflects the reality
- Generate random observations using the learned HMM (from the partial data) and compare those with the holdout (test) set (e.g., cross validation)
- Many **statistical tests** exist for this purpose (depending on the emission density function)
- How to select the **optimal # hidden states** N? Typically using **AIC** or **BIC** (Bayesian Information Criterion)
- Inference (not discussed)
 - Joint probability of an observed sequence
 - Joint probability of a sequence of hidden states given the observations →
 Viterbi algorithm

WITH THE DEPMIXS4 PACKAGE

Applying HMMs Using

Real-world Application

BEACH

MODELING VISITORS' TRAJECTORIES IN SENTOSA USING HMM'S

00 6

Follow this path! Take a leisurely stroll on Sentosa Boardwalk and explore fun-filled activities and a good mix of F&B outlets a Sentosa, Asia's Favourite Playground!

511050

Background on Sentosa Play (Day) Pass

- Is an attraction bundling scheme marketed by Sentosa
- Play one price and redeem up to 17 participating attractions in Sentosa – "Up to 70% Savings!"
- Price variability depends on:
 - Adult/Child
 - Weekday/Weekend
 - 1Day/2Day Pass
- Pass valid from **9am** to **6pm** (10-hour period) daily (for oneday use only)

Participating Attractions

Spatio-temporal Trajectories

- Collected for **7 months** in 2012–2013
- Involves over **30K visitors** in total, each produces a trajectory
- Each trajectory is a **temporally-ordered sequence** of attraction visits with length varying from 1 to 17 (approx. normal w/ mean around 8-9)
- Each trajectory is a *bivariate* spatio-temporal sequence
 - Sequence of **attractions (events)**: *discrete* r.v.
 - Sequence of **times-to-event**: *continuous* r.v. (# mins from 9am until the visit)
- Reflects the diverse behaviors (*observed*) and the preferences/tastes (*unobserved*) of visitors that are confined by the pass's T&C's and the physical clustering of the attractions + human activities (e.g., lunchtime)

Model Specification & Fitting

- Specify an HMM using depmixS4 with:
 - Bivariate response: multinomial (discrete attractions/events) + Gaussian (continuous time-to-event)
 - Incremental fitting to determine the optimal # states using BIC
 - Important to specify the independent sequences for each of these individuals (30K reduced to 14K through groupings)
 - Takes very long time due to HUGE dataset!

Model Validation w/ 6-fold Cross Validation (1)

|Resid.| of attrld - Fold 2

|Resid.| of attrld - Fold 4

|Resid.| of attrld – Fold 5

|Resid.| of attrld - Fold 6

Attractions

Model Validation w/ 6-fold Cross Validation (2)

0.0030

0.0015

Distr. of timeStamp @ F. 3

rallan

States = 19

p = 0.1659

KL = 0.0014

RMSE = 2e-04

600

500

Generated Reality

Distr. of timeStamp @ F. 5

400

Distr. of Time-to-Event for Each Attraction

Distr. of timeStamp of Attr #13 @ F. 1

Distr. of timeStamp of Attr #23 @ F. 1

Distr. of timeStamp of Attr #29 @ F. 1

Distr. of timeStamp of Attr #89 @ F. 1

Distr. of timeStamp of Attr #43 @ F. 1

Distr. of timeStamp of Attr #35 @ F. 1

Logrank Tests of Distributions of Time-to-Event Using Survival Analysis

Physical Clustering of the Attractions

Attr Visit Distr over 30-min Intervals for All Visitors

Learned Clusters through the HMM's Emission Parameters

Attractions