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Abstract—The proliferation of wireless technologies in today’s
everyday life is one of the key drivers of the Internet of
Things (IoT). In addition to being an enabler of connectivity,
the vast penetration of wireless devices today gives rise to a
secondary functionality as a means of tracking and localization
of the devices themselves. Indeed, in order to discover and
automatically connect to known Wi-Fi networks, mobile devices
have to scan and broadcast the so-called probe requests on all
available channels, which can be captured and analyzed in a
non-intrusive manner. Thus, one of the key applications of this
feature is the ability to track and analyze human behaviors in
real-time directly from the patterns observed from their Wi-Fi-
enabled devices. In this paper, we develop such a system to obtain
these Wi-Fi signatures in a completely passive manner and use
the Wi-Fi features it captures within a set of adaptive machine
learning techniques to predict in real-time the expected length
of stay (LOS) of the device owners at a specific location.

I. INTRODUCTION

The widespread use of Wi-Fi hotspots has become the norm
in many daily settings as the number of Wi-Fi-enabled mobile
devices (e.g., smartphones, headphones, cameras, etc.) in the
consumer market grows exponentially. In order to discover
and automatically connect to known Wi-Fi networks, a mobile
device has to scan periodically over the Wi-Fi bands by broad-
casting the so-called probe requests on all available channels
[1], [2], [3], [4]. After having successfully associated with a
Wi-Fi access point (AP), a mobile device typically continues
to send probe requests (even though with less frequency),
particularly when the connection is unstable or when the user
roams between different APs [1], [4]. Probe requests, which
is specified by the IEEE 802.11 protocol [5], carry valuable
information about the connectivity such as the device’s unique
MAC address and the signal strength, among others. It is
also noteworthy that a device’s probe requests are universally
accessible. That is, while only the administrator of the APs can
query the system log, anyone can access probe requests sent
by mobile devices using an off-the-shelf Wi-Fi sniffer such
as Wireshark [6], [7], [8]. Moreover, even if no APs are
present, probe requests are still being sent by mobile devices
and can still be observed. Thus, accessing probe requests can
be done in a completely non-intrusive manner that requires no
additional software installation on the client device.

Thanks to these advantages, real-time Wi-Fi analytics using
probe requests have gained much interest among researchers in
recent years. Handte et al. [4] designed a system to estimate

the number of passengers in public transportation vehicles.
Musa et al. [1] described how to exploit probe requests to infer
vehicle trajectories using a hidden Markov model (HMM).
Bonné et al. [7] built a system on top of a Raspberry Pi to track
the user’s location at mass events using probe, association and
re-association requests. Wang et al. [9] studied queue time
measurement using a single-point Wi-Fi monitoring approach
and designed queue measurement techniques adaptive to dif-
ferent periods of time based on Bayesian networks.

In many retail settings (e.g., coffee shops, fast food restau-
rants, stores, etc.), it is often desirable to have real-time
knowledge of customers’ flow and mobility patterns such
that goods and services at different locations can be adjusted
accordingly to optimize sales. At the same time, numerous
research into human behaviors have shown that behaviors
are far from being random and, in many cases, are highly
predictable using machine learning techniques [10], [2], [11],
[9], [8], [12], [13]. To this end, Manweiler et al. [11] proposed
a system (called “ToGo”) that predicts a user’s length of stay
(LOS) at a specific location. Their system is intrusive because
it requires additional software installation on each client device
in order to send out the necessary features through Wi-Fi and
have their LOS classified and predicted. The system made use
of a static support vector machine (SVM) classifier in order
to predict the LOS classes of each participating user.

In this work, we are interested in developing a non-intrusive
and purely passive system to obtain the relevant Wi-Fi mobility
information of customers in retail settings. We design and
implement a system for passive Wi-Fi sensing and real-time
prediction of LOS using adaptive online machine learning
techniques. Specifically, we wish to detect a given customer’s
behavior without requiring them to install and run any par-
ticular application on their device, and then predict how long
they will stay in the vicinity. We also wish to do that as soon
as possible before the person is known to have left.

We define the length of stay (LOS) (also called “dwell
time”) of a mobile device as the duration of time it stays active
at a specific location. “Active” means that the device can be
passively detected via Wi-Fi. Suppose LOS can be categorized
into discrete class labels (e.g., passer-by, short stay, medium
stay, long stay, etc.) Our goal is to develop a non-intrusive
system that detects Wi-Fi information from active devices in
the vicinity (of a specific location) and predicts in real-time



TABLE I: The retained data fields of each received data frame.

Field Description
timestamp Date and time of the receipt of the frame
MAC_addr Unique MAC address of the mobile device
power_mgt Power management state (awake/sleep) of the device
type Either 1 (management), 2 (control) or 3 (data)
subtype Additional discrimination between frames
seq_ctrl Counter that identifies message order and eliminates duplicates
RSSI Received Signal Strength Indicator indicating the signal strength
channel Indicates the channel (e.g., ranging 1–14 for 2.4 GHz band)
data_rate Speed of data transmission
SSID Identifier of the AP

the true LOS class of each as soon as possible.
Our main contributions can be summarized as follows:
• We design and develop a completely passive system that

requires no additional software installation on the client
device for Wi-Fi sensing and feature generation;

• The proposed system uses the generated features to
efficiently train an online classifier and predict in real-
time the LOS class of each active device;

• We evaluate our system at two different locations and
demonstrate its efficacy against a baseline classifier pro-
posed in [11].

II. SYSTEM DESIGN & IMPLEMENTATION

A. System Architecture

Fig. 1 illustrates the overall architecture of our passive Wi-Fi
sensing and LOS prediction system. One (or multiple) passive
sniffer(s) collects Wi-Fi data of the active devices in real-
time and cache them into a Redis server. A cron job is then
created to clean, normalize and dump the data from the Redis
server into a MySQL database. After which, a classification
and prediction module reads from the MySQL database, learns
from the examples of inactive devices (i.e., those whose data
frames are no longer detected) and predicts the LOS of those
still active devices. Finally, a web application interacts with
the server as the front end to provide real-time visualization of
the number of active mobile devices and their predicted LOS.
We elaborate on each of the components as follows.

Wi-Fi Sniffer. The Wi-Fi sniffer captures both probe re-
quests and other data frames (e.g., null, probe responses, etc.)
However, unlike probe requests, most other data frames are
channel-specific, which means that the sniffer has to listen
to the right channel in order to capture them. On the other
hand, these data frames are typically sent out by the mobile
device after having been successfully associated with an access
point (AP). Thus, it is necessary to loop over all the available
channels on which the associated AP works in order to capture
these data. We call this channel switching on the AP.

After parsing the packets, only the data fields listed in Table
I are retained for each received data frame. The received
data frames are then piped asynchronously to the Redis
server. Asynchronization is essential because a sniffer typically
receives thousands of data frames per second.

Backend. The backend module consist of two sub-modules:
a Redis server and a MySQL database. In the Redis server,
the following two key-value pairs are used:

• active_users: A sorted set of MAC addresses asso-
ciated with an expired timestamp as the value. A mobile
device is active when the maximum duration between
any two consecutive data frames it sends out is no longer
than 10 minutes; otherwise, it is inactive, and its last data
frame is said to be expired. When estimating the number
of active mobile devices and their LOS, only those MAC
addresses with non-expired values are considered;

• records: A list where each element is a serialization
of a JSON object consisting of the fields mentioned in
Table I. A Python script is then used to normalize the
fields and dump the list into the MySQL database.

Because we are only interested in mobile devices (e.g.,
smartphones), only those MAC addresses of known mobile
phone manufacturers are retained by looking up the latest
IEEE OUI table [14]. Those that are not likely from mobile
devices (e.g., from laptops, printers, etc.) are discarded.

Web Server. The web server is implemented in Flask (a
Python web framework) to show the number of active mobile
devices and their predicted LOS in real-time. Fig. 2 shows the
screenshot of the front-end web application.

B. Classification & Prediction Module

The prediction module is implemented in Python using
the Scikit-learn machine learning library [15]. In this
application, instead of predicting the real LOS (in minutes), we
classify it into a finite number of class labels (i.e., categories of
LOS). This is more useful in most practical use cases in retail
settings [11]. How to do the actual classification is specific
to the use case and is not discussed here. We, however, give
a simple example of how such a classification can be done
in Section III-B. In this module, we implement an online
classifier for real-time classification of LOS. Online classifier
works best because its parameters can be adaptively updated
in real-time in light of new stream of learning examples (i.e.,
ground truths). A new ground truth emerges when a device
becomes inactive and has its true LOS recorded.

We propose to implement the linear SVM classifier (i.e.,
SVM with linear kernel) with stochastic gradient descent
(SGD) training due to its ease of implementation and proven
efficiency in large-scale online learning [16]. SGD is a simple
yet very efficient approach to discriminative learning of linear
classifiers under convex loss functions. Each parameter update
(i.e., feature weights w of SVM) of SGD is given by:

w← w − η
(
α
∂R(w)

∂w
+
∂L(w>xi + b, yi)

∂w

)
, (1)

where η is the step size (i.e., the learning rate), α > 0 is a
non-negative hyperparameter, R(w) is the regularization term,
L(·) is a loss function, b is the intercept, and (xi, yi) is a
new ground truth. The interested reader may refer to [16] for
detailed implementation of SGD.

At each time step t, the module queries the MySQL database
and generates a list of time-dependent features x(t) and LOS
class labels y. Table II summarizes the feature vector x(t) of
each training example at time step t. Note that ‘RSSI’ and



Fig. 1: Overall architecture of our passive sensing and prediction system of length of stay (LOS) using real-time Wi-Fi data.

Fig. 2: Screenshot of the front-end web application monitoring
the number of active mobile devices in real-time.

‘Data rate’ feature each has three values: cumulative mean,
standard deviation (‘stddev’) and histogram.

Given a mobile device, let {ri}ni=1 be its time
series of RSSI values. The cumulative mean
and standard deviation of {ri}ni=1 are defined

as: {µr
i }ni=1 =

{∑i

j=1
ri

j

}n

i=1

and {σr
i }ni=1 ={∑i

j=1
r2i

j − (µr
i )2

}n

i=1

, respectively. The histogram of

RSSI is a time series of vectors of the form {hri }ni=1 ={(∑i
j=1 1rj∈(−100,−80), . . . ,

∑i
j=1 1rj∈(−20,0)

)}
. The

instantaneous gradient of {ri}ni=1 is the backward difference
defined by {r′i}ni=2 =

{
ri−ri−1

∆ti

}n

i=2
, where ∆ti is the time

difference between the i-th and i − 1-th received data frame.
The cumulative mean, standard deviation, histogram and
instantaneous gradient of data rate are similarly defined.

The learning features in Table II are derived from those
in Table I by using the feature importance functionality of
random forests (with LOS classes being the response) [15].

TABLE II: Cumulative feature vector x(t) of each data frame
collected from a mobile device at each time step t.

Feature Description
begin_hours Integer hour of the day when the device was first detected
RSSI Cumulative mean, stdev and histogram of RSSI
Data rate Cumulative mean, stdev and histogram of data rate
time_spent Current LOS (so far) of this device (in minutes)
num_device Current number of other devices detected at the location
rssi_grad Instantaneous gradient of RSSI
data_rate_grad Instantaneous gradient of data rate

III. EXPERIMENTS

A. Data Collection

We deploy our system to passively collect Wi-Fi data at two
different office locations in Singapore, which we call Location
1 and Location 2. Because the offices are open space and
dynamic environments, where workers and clients keep com-
ing in and out during the day, our test environments resemble
and are comparable to realistic retail settings. Moreover, the
dynamics at the two locations are also different. Location 1 has
more homogeneous population of office workers characterized
by longer stays and more typical “office-hour” patterns. The
dynamic at Location 2 is more agile with frequent client visits
(i.e., short-term stays) and mobile working environment for
the employees. Thus, the two datasets represent two distinct
customer behavioral and mobility patterns.

Four (4) and seven (7) days of data are collected at Location
1 and Location 2, respectively. (The days of collection are
not necessarily continuous.) For each day, we collect Wi-Fi
data frames from all mobile devices detected in the office
continuously for 9 hours, from 9 a.m. to 6 p.m. Fig. 3 shows
the daily number of records (i.e., data frames) collected at
each location. On average, there are approximately 800 and
400 unique mobile devices observed per day at Location 1
and Location 2, respectively. Note that on June 20, 2016 at
Location 2, we performed channel switching on the APs. We
switched over all 14 channels that resulted in a significant



number of packet losses. Starting from July 21, 2016, we only
switched over 3 channels of 1, 6 and 11 where most of the
APs work on. Fig. 3 shows that, for both locations, very large
numbers of records were collected per day and every moment
(i.e., thousands of records per second).

Fig. 3: Daily number of records (data frames) sniffed at two
office locations. Dates are in ‘year-month-date’ format.

B. Experimental Design

For each day, we divide the 9-hour timeline into d 9
∆e

intervals of length (at most) ∆ hours each, where ∆ is varied
from 1 to 6 hours. (The last interval is 9− b 9

∆c ×∆ hours.)
The first interval is always used for training, then the second
interval is used for testing, and then after that we alternate
between training and testing until the last interval. The last
interval is always used for testing no matter what. That is, if
the second-to-last interval is test, the last one is still test.

For each training interval, we artificially defined 5 classes of
LOS ranging from 1 to 5, where 1 corresponds to the shortest
stay and 5 the longest. We define the boundaries of each class
by evenly dividing the training interval into 5 sub-intervals.
That is, if the training interval is of length 1 hour, then LOS
class 1 is (0, 12] minutes, class 2 is (12, 24] minutes, class 3
is (24, 36] minutes, class 4 is (36, 48] minutes, and class 5 is
(48,∞) minutes. Hence, the LOS class of each mobile device
(detected during the training interval) is determined by which
sub-interval its last data frame (i.e., final LOS) falls on. The
last data frame of a mobile device is received when it has not
been detected at the location for at least 10 minutes since the
last receipt. We say the device is absent from (or has left) the
location. Fig. 4 illustrates the design of our experiments.

Fig. 4: Design of our experiments on each day at each location.

It is important to note that, for each training interval, only
those devices that are present and and later become absent
in the same interval are taken as ground truths for learning,
i.e., those who have their true LOS observed. Those that later

become absent in other subsequent intervals are discarded from
learning. For each test interval, all active mobile devices that
become absent in the interval are included for testing, whether
or not they have been present in the intervals before.

For each training example, we collect the cumulative data
frame features x(t) of the device (as shown in Table II) every
15 seconds until its last data frame. Corresponding to each
feature vector x(t) is the true LOS class of the device as
observed in the interval using the defined class boundaries.

For testing, for each present mobile device i, we make a
prediction of its final LOS class using the observed data frame
features xi(t) every 15 seconds during the test interval (via a
trained classifier). At time t, we call such prediction Ĉi(t)

pred.
We also have the current class label of the device based on its
current LOS and the defined class boundaries (as illustrated in
Fig. 4). We call this Ci(t)

current. Thus, the adjusted predicted
class of LOS at time t is given by:

Ci(t)
pred = max{Ĉi(t)

pred, Ci(t)
current}. (2)

Hence, if the last class label (i.e., class 5) is present in the
training set, then it would always be correctly “predicted” in
the test set once the current LOS of the device crosses over
to the lower boundary of the last class (since it would be the
only class left considering the device’s current LOS).

C. Evaluation

To evaluate the LOS prediction accuracy, we use the
mean_misprediction metric defined as follows. For each
device i, suppose that i’s final true class of LOS is Ctrue

i .
At any time t, our adjusted prediction of i’s true class is
Ci(t)

pred. The instantaneous misclassification error for i can
be expressed as: Di(t) = |Ctrue

i −Ci(t)
pred|. We evaluate the

mean misclassification rate across N(t) active mobile devices
present at time t as:

mean_misprediction(t) =

∑N
i=1 |Di(t)|
N(t)

. (3)

We can then further average the mean_misprediction
error rate across all 15-second time steps of all test intervals
for a given day and across all the days at the given location.
The following classifiers are evaluated in our experiments:
• SVM. The static linear SVM classifier that is trained from

the examples in the immediate previous training interval.
This is the classifier implemented in the framework
proposed by Manweiler et al. [11].

• Stochastic Gradient Descent (SGD). The online linear
SVM classifier that is trained from the examples in the
immediate previous training interval and is continuously
updated in real-time during testing as new ground truths
are learned. Refer to Section II-B for implementation.

D. Results

Fig. 5 summarizes all our experimental results. Figures 5a
and 5b show the time series of the mean misprediction aver-
aged over all test intervals and all test days at Location 1 and



(a) (b)

(c) (d)

Fig. 5: Top row: Time series of the mean misprediction rate averaged over all test intervals and test days for each ∆ (1 ≤ ∆ ≤ 6)
for: (a) Location 1, and (b) Location 2. Horizontal axes show the timeline of an average test day. Vertical bars illustrate the
defined class boundaries for each ∆. Bottom row: Box plots showing the mean misprediction distribution averaged over all
time steps of all test intervals and test days ∀∆ for: (c) Location 1, and (d) Location 2. Mean values of the distributions are
annotated in the ‘boxes’ as red dots. Prediction errors for class 5 are excluded once a device crosses the class’s lower bound.

2, respectively. Each time series is an averaged prediction error
rate made every 15 seconds throughout the entire day. Each
day is also divided into 6 subplots for 6 different values of ∆.
We additionally plot the vertical bars illustrating the defined
class boundaries on each subplot. Through the figures, we can
see quite consistently that the time series of SVM is almost
always above that of SGD. In other words, SGD consistently
outperforms (i.e., makes more accurate classifications than)
SVM for all ∆ at both locations over all time steps.

Irrespective of what classifier (SVM or SGD) and ∆, all
time series share certain common characteristics. For any given
sub-interval, the mean error rate almost always increases from
the lower boundary to the upper boundary. This is because
there is always less uncertainty in the beginning of the sub-

interval (at the lower boundary), but as the device continues
to stay on longer, there is more uncertainty whether the device
would belong to this class or the next (if it eventually crosses
the upper boundary). This progression of uncertainty is also
true for the whole time series: there is less uncertainty initially
(class 1), the level of uncertainty increases as the device stays
longer (class 2 and 3). This is why the end of class 2 is where
the curve typically ‘peaks’. However, once the device crosses
over to class 4, the level of uncertainty drops again (as there
are only two classes left). As soon as it crosses over to class
5, there is no more uncertainty (as there is only one class left),
and the error rate automatically drops to zero.

Figures 5c and 5d show the distributions of the mean error
rates averaged across all time steps and test days for all values



of ∆ at Location 1 and 2, respectively. Note that in these
figures, the prediction errors for class 5 are excluded once a
device has stayed passed its lower boundary (since the error
rate then automatically becomes 0). The figures confirm what
we have observed in the time series: SGD outperforms static
SVM for all configurations. Not only are the mean and median
of the mean misprediction of SGD lower, but the spread of its
distributions are also smaller for most cases. Thus, not only
does SGD make more accurate predictions, its predictions are
also more stable (i.e., having smaller spread).

E. Discussion

As mentioned in Section III-A, Location 2 has more dy-
namic environment and short-term stays than Location 1. This
implies that online learning in real-time should benefit more
in Location 2 (as the model parameters are more frequently
updated in light of recent training examples). Our experiments
demonstrate that. Note that in Fig. 5d (Location 2), the
difference between the distribution mean of SVM and that of
adaptive SGD is almost always greater than the corresponding
difference in Fig. 5c (Location 1), except for ∆ = 6. This
demonstrates the efficacy of the proposed online SGD classi-
fier for dynamic and rapidly changing environments.

From Figures 5c and 5d and considering only the adaptive
SGD classifier, we see that, as ∆ increases from 1 to 6, the
prediction error rate behaves differently at two locations. The
minimum error rate occurs at ∆ = 6 for Location 1 and at
∆ = 3 for Location 2. This matches with our observation that
Location 2 is more dynamic such that (lower value of) ∆ = 3
best partitions the data into training and test sets. Location 1,
on the other hand, has more regular (office) mobility patterns;
thus, ∆ = 6 best partitions the data there. We also see that the
minimum error rate at Location 2 is lower than that at Location
1, which strengthens our argument that adaptive SGD classifier
is more suitable for more dynamic environments.

Finally, in terms of runtime performance, both static SVM
and online SGD are very efficient: SVM takes no more than
3 (s) and SGD less than 1 (s) to train on average for all ∆.
Each parameter update of Eqn. (1) takes constant time [16].

IV. CONCLUSION

In this paper, we propose, design and test a passive Wi-
Fi sensing system to monitor and predict in real-time infor-
mation about people’s movements. Such a system has many
interesting applications in retail settings in particular. We
discuss specifically the application of predicting the length
of stay (LOS) of an individual’s mobile device in real-time
at a specific location. The system automatically generates a
number of features derived from probe requests and other
frames obtained in a non-intrusive way. The features are
used to train a linear SVM classifier as well as an online
SGD update mechanism to take into account the dynamics
of the environment and adaptive changes to the classification
parameters. Of interest to the future work would be to explore
other applications that can be derived from this type of system.
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