Real-time Length of Stay Prediction Using Passive WiFi Sensing

Truc Viet Le¹ Baoyang Song ² Laura Wynter³

¹School of Information Systems Singapore Management University, Singapore

> ²Computer Science Department École Polytechnique, France

> > ³IBM Research Singapore

May 22, 2017

Outline

1 Introduction

2 Framework

3 Experiments

Outline

1 Introduction

2 Framework

3 Experiments

Motivation

- \bullet Mobile devices are pervasive links between networks & individuals.
- Widespread use of affordable Wi-Fi in many retail settings for customer's convenience (and, more importantly, behavior tracking).
- Human behavior is not random, predictable through pattern recognition.
- Build a system for passive data collection and online learning in real-time

Why length of stay?

Length of stay

Length of stay (LOS), or dwell time, is the duration of time a device (individual) stays active at a specific locality.

- Length of stay (LOS) provides precious information for stores (e.g. adjusting service stuffs).
- Previous work shows that LOS is predictable.

Why WiFi?

- WiFi access points (AP) are becoming omnipresent, most of mobile stations today are equipped with WiFi functionality;
- Mobile stations scan periodically the WiFi bands by broadcasting on all available channels *probe requests*;
- Association process:

Figure: Association process of a mobile station with an AP

Why WiFi (cont'd)?

Unparalleled advantages of probe request:

- Probe requests are not bound to any specific AP (figure 1).
 - Even if no APs exist at all, probe requests are still sent and can still be recorded/sniffed;
- Probe requests are universally accessible:
 - administrators of APs: querying the system log;
 - anyone: sniff with tcpdump or Wireshark
- Accessing probe requests is device-free and non-intrusive:

Related Work

Manweiler, J., Santhapuri, N., Choudhury, R. R., & Nelakuditi, S. (2013, April). Predicting length of stay at wifi hotspots. In INFOCOM, 2013 Proceedings IEEE (pp. 3102-3110). IEEE.

- Real-time classification of dwell time (LOS) into 5 categories using SVM
- Advantages:
 - Live prediction
 - High accuracy
- Disadvantages:
 - Software needs to be installed on mobile devices \rightarrow intrusive!
 - Many features, e.g., transmission rate, are not available for unassociated devices

Our work

- Assumption: LOS can be put into categories
- Goal: at each time t, predict the true LOS label of an active device in real-time and as soon as possible based on data frames and features continuously received from the device till t
- Suppose (discrete ordinal labels), e.g., passer-by, short-stay, medium-stay, long-stay, etc. specific to the use case.
- Advantages:
 - Low cost
 - Passive
 - Real time

Outline

Introduction

2 Framework

3 Experiments

System Design

Outline

Introduction

2 Framework

3 Experiments

Data acquisition

Data fields

Field	Description
timestamp	Date and time of the receipt of the frame
MAC_addr	Unique MAC address of the mobile device
power_mgt	Power management state (awake/sleep) of the device
type	Either 1 (management), 2 (control) or 3 (data)
subtype	Additional discrimination between frames
seq_ctrl	Counter that identifies message order and eliminates duplicates
RSSI	Received Signal Strength Indicator indicating the signal strength
channel	Indicates the channel (e.g., ranging 1–14 for 2.4 GHz band)
data_rate	Speed of data transmission
SSID	Identifier of the AP

Table: The retained data fields of each received data frame.

Features

Feature	Description
begin_hours	Integer hour of the day when the device was first detected
RSSI	Cumulative mean, stdev and histogram of RSSI
Data rate	Cumulative mean, stdev and histogram of data rate
time_spent	Current LOS (so far) of this device (in minutes)
num_device	Current number of other devices detected at the location
rssi_grad	Instantaneous gradient of RSSI
data_rate_grad	Instantaneous gradient of data rate

Table: Feature vector $\mathbf{x}(t)$. Calculated every 15 seconds.

Training

- For each day, divide a 9-hour timeline into $\frac{9}{\Delta}$ intervals
- The first interval is used for training, second for testing, etc. The last interval is always for testing.
- Each interval is divided equally into 5 sub-intervals.
- Only stays that starts and ends in the sub-intervals are retained.
- The label is the number of sub-intervals covered.
- Training using classical SVM and online SVM (detailed later).

Interlude - SVM

• (Soft) maximal margin:

Figure: Linear SVM - Separable case

• Hinge-loss: the SVM classifier $x \mapsto \text{sign}(\omega x + b)$ minimizes the (regularized) hinge-loss

$$\frac{1}{n} \sum_{i=1}^{n} \max(0, y_i(\omega x_i + b)) + \lambda \|\omega\|^2$$
 (1)

T. V. LE, B. SONG, L. WYNTER

17 / 26

Interlude - Stochastic gradient descent

- Function to minimize: $Q(\omega) = \frac{1}{n} \sum_{i=1}^{n} Q_i(\omega)$.
- Gradient descent:

$$\omega := \omega - \eta \frac{1}{n} \sum_{i=1}^{n} \nabla_{i} Q_{i}(\omega)$$

• Stochastic gradient descent:

$$\omega := \omega - \eta \nabla_i Q_i(\omega)$$

Testing and evaluation

For each present mobile device i

- $\hat{C}_i(t)^{\text{pred}}$: the prediction of its final LOS class.
- $C_i(t)^{\text{pred}} = \max\{\hat{C}_i(t)^{\text{pred}}, C_i(t)^{\text{current}}\}.$

Mean mis-prediction

Given device i, suppose that its final true class of LOS is C_i^{true} . At any time t, our adjusted prediction of i's true class is $C_i(t)^{pred}$.

The mean mis-prediction error at time t is defined as

mean_misprediction(t) =
$$\frac{\sum_{i=1}^{N} |D_i(t)|}{N(t)}.$$
 (2)

where $D_i(t) = |C_i^{true} - C_i(t)^{pred}|$ is the instantaneous misclassification error for i and N(t) the number of active device at t.

Evaluation

Evaluation (cont'd)

Evaluation (cont'd)

Evaluation (cont'd)

Conclusion

- Design and test a passive Wi-Fi sensing system to monitor and predict in real-time information about people's movements.
- Many interesting applications in retail settings.
- For length of stay, the system automatically generates a number of features.
- The features are used to train a linear SVM classifier as well as an online SGD update mechanism to take into account the dynamics of the environment and adaptive changes to the classification parameters.
- Future work: explore other applications that can be derived from this type of system.

Questions?

Thank you for your attention!